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Introduction

e Machine learning (ML) offers more flexibility than traditional regres-
sion, which primarily focuses on variable selection.

ML models have potential to fit noisy data; risk of overfitting.

e Little guidance on how to tune ML models.

How well do out-of-sample (Oo0S) or recursive forecast evaluation
methods guard us against the risk of overfitting OoS?

General Framework
Equity Risk Premium

Let r; ; be the excess return of asset ¢ at time ¢, then
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Our objective is to model the predictable part with g(-):
Elri¢ | Zi-1] = g(Xit-1;0),

a function of K predictor variables X;;_; and parameters 0.

Data

e Monthly asset returns (CRSP).
* Firm characteristics X; ; (Gu et al., 2020), filled using B-XS model (Bryzgalova

et al., 2022). Cross-sectionally scaled between [—1, 1] + industry dummies.
e Features: 1" x /Ny = 800,000+ observations, /X = 140.

— Training set 71: Jan 1977 — Dec 1996.
— Test set 7o: Jan 1997 — Dec 2021.

Estimation Procedure

1. Estimate model parameters ¢ on 7 minimizing the /5 norm:
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2. Predict using 0 on 7s.
3. Update 71 with 12 months, go to step 1.
4. Evaluate performance using Out-of-Sample R? against zero prediction:
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If R%) ,s > 0, model outperforms zero prediction (%).

Models & Resulis

Linear Models

Functional form: ¢(X;;—1; 8) = By + ' X -1,
with Elastic Net penalty (Lasso: A = 1):
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Hyper parameters:

» [ shrinkage on coefficients: o € {0.001,0.002, ...,0.015}
* (I1,19) penalty mix: A € {0.2,0.3,0.4,0.5,0.6,0.7,0.8}

Figure: Sensitivity R, . to « in Elastic Net
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Ensemble Models

Functional form: ¢(X,,_;0,L, D) =57 91 X,, eCy(D)» With loss:

Po.0=5 Y (re-y X ), ©)
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where C}(D) is the [-th of the L data partitions, and ¢); the corre-
sponding sample average.

Random Forest (RF): Hyper parameters:

bagging procedure  No. of trees: B € {30, 50, 150, 300, 500}
e Max. tree depth: D € {1,2,3,4,6}
 No. of features each split: V € {1, 3, 10, 30, 50}

Extreme Gradient
Boosting (XGB):
boosting procedure

Hyper parameters:

* No. of trees: B € {500, 1000, 1500}
e Learning rate: nn € {0.01,0.1,0.2,0.3}
e Max. tree depth: D € {1,2}

Figure: Sensitivity R,  to D in Random Forests
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Feed-Forward Neural Networks

Functional form: g(X;; 1;60) = 2" wg, 1,
with hidden layer 79 = f (?15@_1)’ w(@) , and weights w'®.

Architecture:
e Hidden layers, Input Hiddfn Output
. layer layer (1) layer
H e {1,2,3,4,5}, with
32, 16, 8, 4, and 2 neurons .
e Activation function, \V’@
f(-) € {linear, ReLu} .\‘ 7
S5
Hyper parameters: *@ -~

n e {1074,107°,1072}
e [ shrinkage penalty: .
o€ {1074,1073,1072}

/>
e Adam learning rate: .7"‘\\"

Figure: Sensitivity 7, . to 1) (left) and « (right) in FNN
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Architecture: not too much effect Hyper parameters: most gain

* H* = 3,4, but minimal impact
* ReLu activation preferred

* Adam learning rate n* = 0.001
* o around 0.001, 0.01

Summary & Further Research

 Hyper parameter grid crucial impact on OoS performance.
* Ensembles and neural nets provide flexibility but risk poor OoS performance.
 Safest choice: linear model with /] penalty; o < 0.01.
 Validation seems to help guard against risk of overfitting.
e Further research:
* Explore: LSTM, other models.

* Improve: validation methods, grid selection.
* Assess: (economic) significance.
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