## End-2-End Application of Machine Learning Models for Credit Acceptance Models

**Artur Usov** TopQuants November 1, 2023



do your thing

## Introduction



### Artur Usov

- **Principal Data Scientist** with 11 years of analytical experience, current focus on instant lending.
- MSc in Economics & MSc in Statistics

### ING INGA STRENGTH IN NUMB3RS

### **Retail Banking Analytics Tribe**

**RBA** 

• Focusing on analytics products in **lending, pricing, collection and personalization** 

# Building analytical capabilities on top of transactional data is crucial for the realization of ING's instant lending ambitions

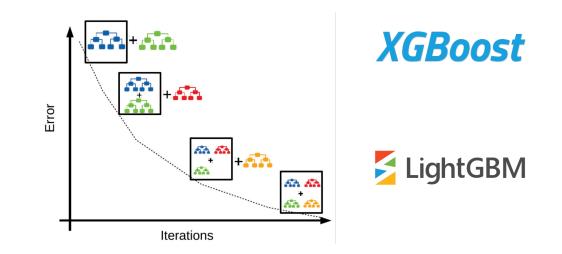
#### Instant Lending Current Lending Process Process Credit Risk assessment with traditional scorecard and Credit Risk assessment with traditional scorecard transactional data of client based on application data TX data **Opportunities** Challenges & ML Most up to date financial situation of client Outdated financial data provided by client might not Improved model performance in estimating risk reflect current financial situation models Pre-score existing clients or service instantly Poor performance & high rejection rate N2B clients Risk estimation of N2B clients with PSD2 data

**Risk Assessment** 

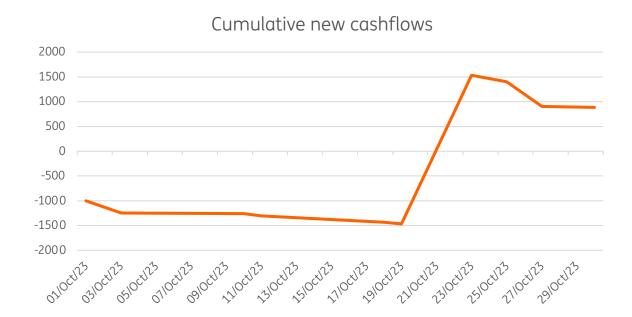
- Transactional data is typically of high quality and granularity
- Transactional data contains both, non-linear effects & interaction terms, which are easier captured by ML models as opposed to classical statistical models
- <u>Right solutions for given problem</u> instead of doing for the hype

## We use ML Models because they provide interactions and non-linear effects out of the box

- Most commonly used algorithms: Gradient Boosting Tree ensembles:
  - XGBoost
  - Lightgbm
- Binning of the risk drivers is performed by the tree algorithm
- At the same time, every tree encodes interactions between features
- Multiple weak learners working together to generate a strong learner: every subsequent tree is using residuals from previous tree as modelling target
- Non parametric models



| Hypothetical Example |        |                   |
|----------------------|--------|-------------------|
| Transaction Date     | Amount | Remaining Balance |
| 01/Oct/23            | -1000  | 10000             |
| 03/Oct/23            | -250   | 9750              |
| 10/Oct/23            | -12    | 9738              |
| 11/Oct/23            | -45    | 9693              |
| 18/Oct/23            | -130   | 9563              |
| 19/Oct/23            | -30    | 9533              |
| 23/Oct/23            | 3000   | 12533             |
| 25/Oct/23            | -130   | 12403             |
| 27/Oct/23            | -500   | 11903             |
| 30/Oct/23            | -20    | 11883             |

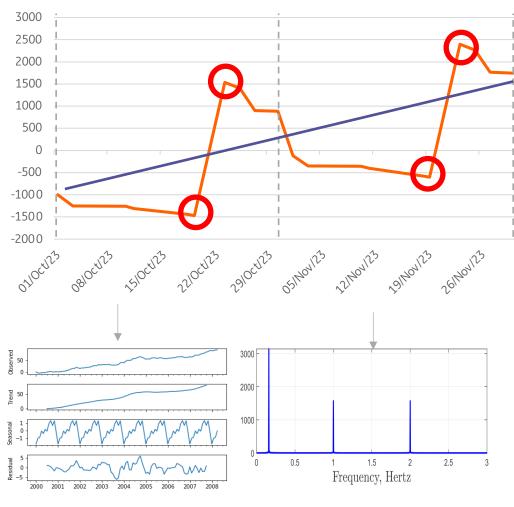


#### Notes:

Above data is hypotehtical

• All data usage in modelling phase should always be within the legal framework and approvals

## With some creativity, one can extract a lot of relevant signals



#### Cumulative net cashflow

### **Risk Driver Design:**

- Risk drivers are computed 1/2/3/6/12m prior to application date
- Simple summary statistics of the amounts (net, credits, debits, balances)
- Ratios: Debits/Credit, debits in first week vs last week, etc.
- Intervals: days between maximum debit and credit, how long to you remain with negative balance, how fast do you come back to negative balance
- Time series decomposition: Trend & Seasonality
- Signal Processing: Fourier and Wavelet transform
- Etc.....

#### **Considerations:**

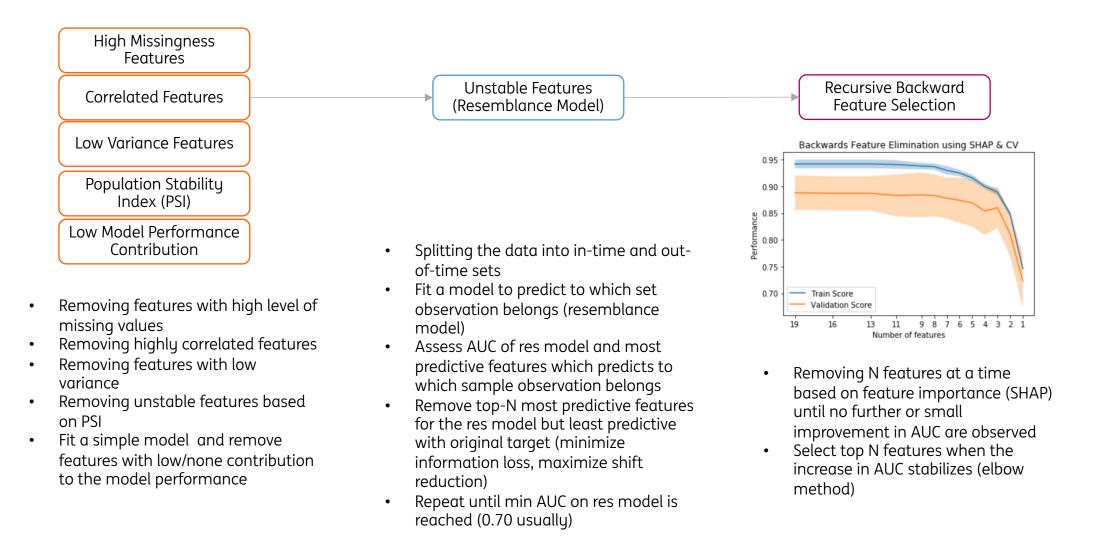
- Computationally extensive procedures are not always feasible to use due to size of transactional data
- Non-stationarity and multiple currencies might can an issue

### Final Pool of Potential Risk Drivers:

- Typically 3000+ potential risk drivers for modelling
- Sky (and cloud memory) is the limit



# We start with a large pool of potential risk drivers, but need to reduce to a stable and reasonable size



## Model Stability and tuning is of most importance....

### **Temporal Cross Validation:**

- Samples to assess the model:
  - **Out-of-Time**: most recent data, used for final model assessment
  - In-Time: used for model training and tuning
  - Out-of-Sample: used for model evaluation
- The IT sample is split into K time-dependent folds, the model is trained on K-1 folds and evaluated on the hold out fold. Process repeated K time and model performances is reported across all K steps.



### Hyper paramter tuning:

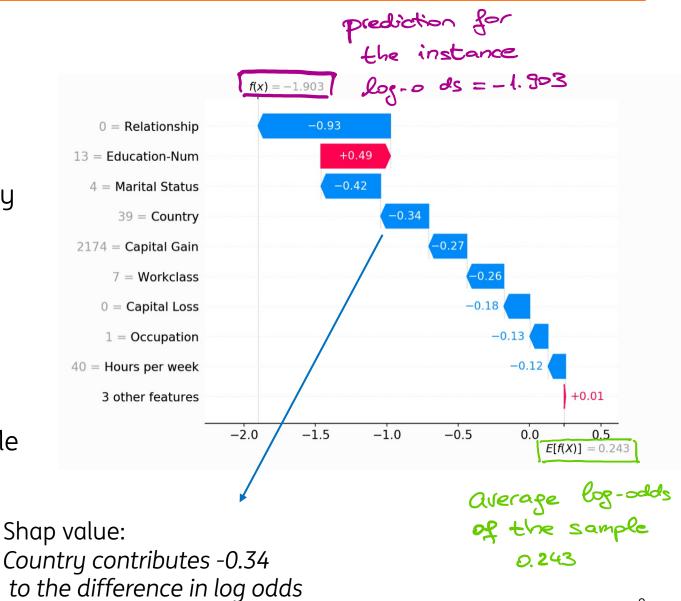
- ML models has a vast variety of hyperparameters, checking all of combinations is computationally heavy
- Random grid search: could result in local minima, but not global
- Bayesian approach (Optuna):
  - Tree-structured Parzen Estimator for hyper parameter tuning
  - Start with a random sample of parameters from a given grid search
  - Continue in direction which minimizes the loss
  - Stop when a minimum delta loss is achieved
  - Drawback: one parameter at a time

## We need to be able to explain our models (hypothetical example)

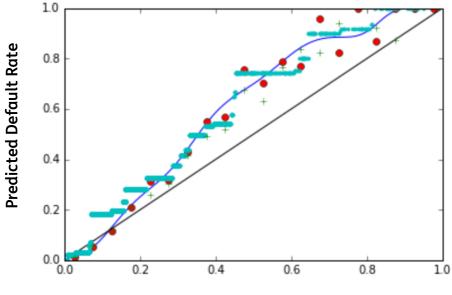
SHAP values (SHapley Additive exPlanations) is a method based on cooperative game theory and used to increase transparency and interpretability of machine learning models.

Individual shap values represent the marginal contribution of a feature in terms of log-odds.

The contribution is always expressed relative to the average odds of the sample



### Model Calibration is needed if the model is used for decision making



**Observed Default Rate** 

### Notes:

- Model probability needs to be calibrated if it is used for decision making
- Calibrated model has a mean PD = ODR, overall and per PD buckets (diagonal in the figure)
- Calibration options: Isotonic Regression or Plat Scaling (LR)

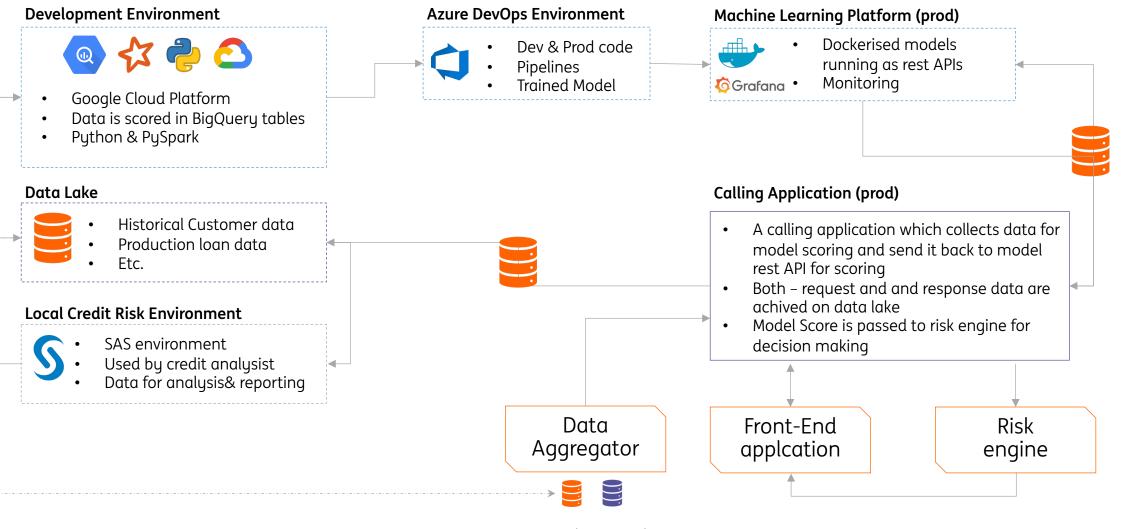
### **Isotonic Regression:**

- Monotonically increasing step function
- Nonparametric method
- Works poorly with low number of defaults, interpolates constant PD values for buckets where no defaults are observed

### **Platt Scaling:**

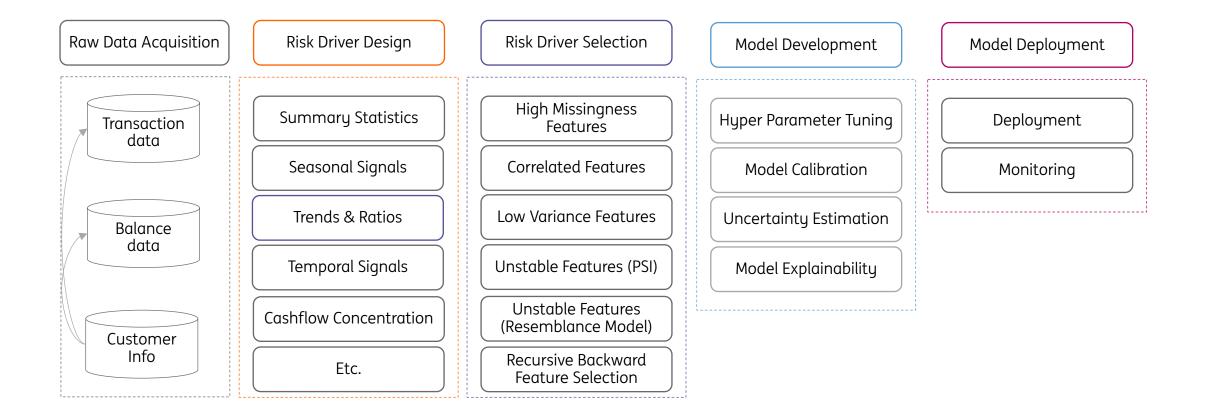
- Fitting a Sigmoid function between ODR and PD values
- Able to interpolate missing buckets well

# Model Deployment & Assessment (Monitoring). It takes time to build the IT capabilities and resources to utilize ML models.



Internal & PSD2 data

### High Level Recap: Model Development cycle



## Thank you for your attention!

## Questions?



do your thing