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Motivation and Contribution

Correct assessment of future (multi-period) volatility is important.
⇒ How to construct multi-period volatility forecasts?
Autoregressive modelling: direct h-step ahead forecast is found to bemore
robust to misspecification than iterated forecast (Marcellino et al. (2006)).
Can we find a similar effect for volatility forecasting, in particular when the
true volatility displays long memory?
This paper:
Proposes a parameter estimation method for traditional volatility models based on daily
data to construct cumulative volatility forecasts.
Assesses the distance between the proposed and the standard QML estimators’ probability
limits to conclude about model misspecification using the metric of Hausman (1978).

Estimation Methods

Consider GARCH(1,1)model specified for daily log-returns:
rt = σtzt, zt|Ft−1∼ i.i.d.(0, 1)

σ2
t = ω + αr2

t−1 + βσ2
t−1,

(1)

where σ2
t = var[rt|Ft−1] and θ = (ω, α, β)′.

Standard QML

Maximise Gaussian quasi-likelihood function over θ:
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t (θ)

)
, (2)

where the quasi-ML estimator is θ̂ = argmaxθ∈Θ Ld
T(θ), θ ∈ Θ ⊆ Rp. Define

rt,h =
∑h−1

j=0 rt+j and Ft = σ{rs : s ≤ t} to use θ̂ to construct iterated cumulative
return volatility forecast:

v̂ar[rt,h|Ft−1] =
h−1∑
j=0

σ̂2
t+j|t−1 =: vh(σ

2
t (θ̂); θ̂), (3)

where

σ̂2
t+j|t−1 = σ2 + (α̂ + β̂)j(σ̂2

t|t−1 − σ2), σ̂2
t|t−1 = σ̂2

t and σ2 =
ω̂

1 − α̂ − β̂
. (4)

θ̂ affects v̂ar[rt,h|Ft−1] in two ways:

In the functional form of the relation between the h-step and 1-step volatility
forecast (determined by α̂ + β̂ ⇒ cannot handle long memory well for large h).
In the filtering of the 1-step volatility forecast.

Our horizon-tuned QML

Maximise Gaussian quasi-likelihood function based on T − h + 1 overlapping h-
day cumulative log-returns over θ:
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where the horizon-tuned quasi-ML estimator is θ̃ = argmaxθ∈Θ Lo
T(θ), and r2

t,h
denotes the sumof squared returns r2

t,h = r2
t+. . .+r2

t+h−1. Similarly, θ̃ canbeused
to construct vh(σ

2
t (θ̃); θ̃), direct form of cumulative return volatility forecasting.

GARCH specification for Realised Measures

Upon availability of daily realisedmeasuresRMt,RMt,h =
∑h−1

j=0 RMt+j is a better
measurement of

∑h−1
j=0 σ2

t+j|t−1 rather than r2
t,h (Andersen and Bollerslev (1998)).

If the signal is stronger, we could get a more accurate cumulative variance
direct forecast by maximising
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RMt,h
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)
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⇒ Specify a model for σ2
t (θ) using realised measures to exploit high-frequency

information.
Note: Themodel for realised measures can also be used to construct iterated
forecast.
Considermultiplicative error model (MEM) of Engle and Gallo (2006):

RMt = σ2
tut, E[ut|Ft−1] = 1

σ2
t = ω + αRMt−1 + βσ2

t−1,
(7)

whereE[RMt|Ft−1] = σ2
t and Ft = σ{RMs : s ≤ t}.

Using the law of iterated expectations (LIE), one can show that
E[RMt+j|Ft−1] = σ2 + (α + β)j(σ2

t|t−1 − σ2)
(8)

To accommodate flexibility of our horizon-tuned QML estimator, we also
consider a component GARCHmodel of Engle and Lee (1999).
Note: Both GARCH and cGARCHmodels are used for return and realised
measure distributions.

Hausman-type specification test

The estimators θ̂ and θ̃ have been obtained by using the first-order conditions
T∑

t=1
sd
t (θ̂) = 0,

T−h+1∑
t=1

so
t(θ̃) = 0. (9)

The scores sd
t and so

t evaluated at the true value θ0 satisfy the condition
E[sd

t ] = E[so
t ] = 0.

We define so
t = 0 for t = T − h + 2, . . . , T.

The joint asymptotic distribution of the two estimators:
√
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)
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)
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]
(10)

To consistently estimate C0, we use the Newey-West (Bartlett kernel) type of
HAC estimator with the lag truncation parameter l.
Hausman test considers the testing situation:

H0 : plim(θ̂ − θ̃) = 0, (11)
H1 : plim(θ̂ − θ̃) 6= 0, (12)

with theHausman test statistic defined as
HT = T(θ̂ − θ̃)′V̂−1(θ̂ − θ̃), (13)

where V̂ denotes a consistent estimator of the asymptotic variance-covariance
matrix of

√
T
(
θ̂ − θ̃

)
.

UnderH0: HT
d−→ χ2

p, where p = rank(V̂), underH1 : HT
p−→ ∞.

Monte Carlo

DGP for Size: GARCHmodel with ω = 0.0156, α = 0.1181, β = 0.8693, ν = 7 (df).

T = 5, 000 T = 20, 000

h = 5 h = 10 h = 22 h = 44 h = 66 h = 5 h = 10 h = 22 h = 44 h = 66

Nominal size l = 160 l = 100 l = 11 l = 22 l = 33 l = 160 l = 100 l = 11 l = 22 l = 33

0.2 0.169 0.14 0.136 0.204 0.263 0.139 0.128 0.122 0.172 0.216
0.1 0.086 0.082 0.08 0.136 0.172 0.07 0.055 0.057 0.101 0.138
0.05 0.044 0.048 0.044 0.085 0.119 0.038 0.029 0.026 0.055 0.084
0.01 0.015 0.016 0.016 0.041 0.062 0.01 0.003 0.002 0.014 0.028

Table 1: Empirical size: percentage of rejections ofH0 in Hausman test for GARCHmodel when DGP
is GARCH. l indicates the number of lags in the Newey-West estimator of C depending on horizon h
in our horizon-tuned QML estimator. 1, 000 simulations is run.

DGP for Power: FIGARCH(1,d,1) model
σ2

t = ω + βσ2
t−1 +

[
1 − βL − (1 − φL)(1 − L)d

]
r2
t .

Number of lags in the Newey-West estimator of C is according to Table 1.
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Figure 1: Power curves: percentage of
rejections ofH0 in Hausman test for GARCH
model when DGP is FIGARCH(0,d,0) at 5%
level. 1, 000 simulations is run.

h = 5 h = 10 h = 22 h = 44 h = 66

d = 0.1 0.146 0.188 0.220 0.244 0.248
d = 0.3 0.186 0.248 0.295 0.319 0.328
d = 0.48 0.241 0.327 0.396 0.433 0.447

Table 2: Mean Euclidean distance between θ̂
and θ̃ for each h (for a subset of d values).

Empirical analysis

Data: 10 individual stocks constituting the DJIA index (Gorgi et al. (2019)).
Sample: open-to-close returns and realised kernel for T = 2515 trading days (Jan-
uary 2, 2001 – December 31, 2010).
Loss function to compare competing forecasts – QLIKE with realised kernel.

Both in-sample and out-of-sample, our horizon-tuned QML estimator yields
more accurate forecasts for realisedmeasuremodels.
Out-of-sample gains are more pronounced during non-crisis periods
(December 2006 – July 2007, January 2010 – December 2010), as concluded
from Diebold-Mariano test.
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