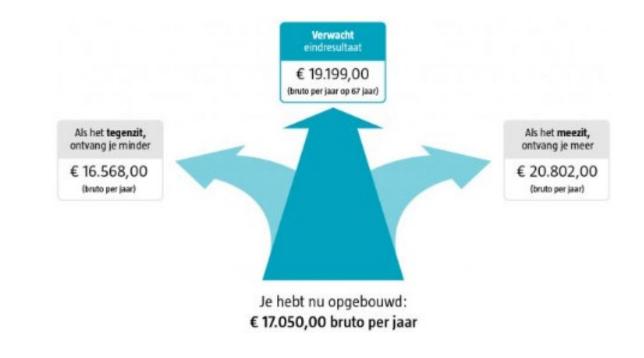


The Model of Commissie Parameters 2022 Antoon Pelsser

Outline of Presentation

- Introduction:
 - What is the Commissie Parameters?

- Structure of CP2022 model:
 - Affine model for stock, nominal rates, inflation & stoch.vol.
- Results of P and Q fit of CP2022 model:
 - Good fit for historical data & observed prices of derivatives



Introduction

The numbers on your UPO

- You receive an annual overview of your (projected) pension income
 - Uniform Pensioenoverzicht (UPO)
- Graph shows three numbers:
 - Expected result after retirement date
 - Includes inflation and indexation
 - Positive scenario (=95% percentile)
 - Negative scenario (= 5% percentile)
- All Dutch pension funds must use the same scenarioset for these projections
 - Model of the so-called "Commissie Parameters"

New Dutch Pension System

- Pressure on the Dutch Pension System
 - Labour market factors
 - ageing population, higher employee turnover in the labour market, early retirement
 - Financial Crises
 - interest rates
- Changes to the Dutch Pension System
 - defined benefit → defined contribution
 - individual accounts
 - better measurement and matching of risk profiles and preferences
- CP 2022 model will help to facilitate this transition

Transition to the New Pension System

"Fair and Balanced" transition

- In the current system, participants have no entitlements
 - Participate in general fund
 - Receive monthly payout after retirement
- In the new system, participants will have individual "pots"
 - Redistribute pension fund assets over individuals
 - Transition Calculation → Use (risk-neutral) valuation of CP2022 model

P and Q Model

```
\mathbb{P} model \rightarrow prognosis
```

 \mathbb{Q} **model** \rightarrow risk neutral valuation

General Affine (Term Structure) Models

CP 2022 Affine Model:

- Stocks
- Nominal Rates
- Inflation & CPI
- Stochastic Volatility

Background

- Every 5 years CP report with advice on a number of parameters and scenario-sets that are needed for calculations in Dutch pension system
- Includes extrapolation method for term structure of interest (based on UFR), and a set of economic scenarios
- Wet Toekomst Pensioenen:
 - new applications of existing parameters and scenarioset (P-set) and
 - new risk-neutral scenarioset (Q-set) needed for transition

Commissie Parameters 2022

- Timeline:
 - Feb 2022: Committee installed by Minister of Pensions (Carola Schouten)
 - Bi-weekly meetings by the committee members
 - 29 Nov 2022: Report presented to the Minister
 - Dec 2022: Technical briefing with Dutch Parliament (Tweede Kamer)
 - Dec 2022: Parliament votes in favour
 - Mar 2023: Technical briefing with Dutch Senate (Eerste Kamer)
 - May 2023: Senate votes in favour
 - 1 July 2023: WTP officially in power

Structure of CP2022 Model

Scenario Generator 2019

- Model CP2019 is based on Koijen, Nijman & Werker (2010): affine model for short rate r_t , expected inflation rate π_t , stock index S_t and price index Π_t
- Calibration based on (only) historical data 1999-2018 for
 - monthly historical spot rates based on swap data,
 - historical stock index values (MSCI World Index), and
 - Eurozone inflation index (HICP)
- Maximum likelihood estimation, under restrictions on long term value of
 - expected inflation, expected stock returns and probability of negative interest rates.

New Scenario Generator of CP2022

- Requirement that new sets should aim to be consistent with historical and current market data, led to number of adjustments:
 - joint (continuous time) model to generate scenarios
 - guarantees equivalent P-/Q-scenario-sets
 - calibration includes derivatives on equity, interest and inflation
 - incorporates market price of protection against risks
 - time-varying future risk premia
 - allows perfect fit nominal/real term structures
 - stochastic volatility process
 - parameters describing financial uncertainty not constant
 - two price index processes
 - allows distinction Eurozone and Dutch inflation

Dynamic Model Specification

• The factor processes corresponding to (squared) volatility v_t , short rate r_t and expected inflation rate π_t satisfy

$$d\mathbf{X}_{t}^{s} = \begin{bmatrix} K_{vv} & 0 & 0 \\ K_{vr} & K_{rr} & K_{\pi r} \\ K_{v\pi} & K_{r\pi} & K_{\pi\pi} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \mathbb{E}v_{\infty} \\ \mathbb{E}r_{\infty} \\ \mathbb{E}\pi_{\infty} \end{bmatrix} - \mathbf{X}_{t}^{s} \end{pmatrix} dt + \begin{bmatrix} \omega & 0 & 0 & 0 & 0 \\ \sigma_{vr} & \sigma_{r1} & \sigma_{r2} & 0 & 0 \\ \sigma_{v\pi} & \sigma_{\pi 1} & \sigma_{\pi 2} & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{t} & 0_{1\times 4} \\ 0_{4\times 1} & I_{4} + v_{t}\Gamma_{1} \end{bmatrix}^{\frac{1}{2}} dW_{t}^{\mathbb{P}},$$

$$=: K(\mathbb{E}\mathbf{X}_{\infty}^{s} - \mathbf{X}_{t}^{s}) dt + \Sigma^{r\pi} (\Gamma_{0} + (\mathbf{X}_{t}^{s})_{1}\Gamma)^{\frac{1}{2}} dW_{t}^{\mathbb{P}},$$

• The log-stock index S_t and Eurozone log-price index Π_t satisfy

$$d\mathbf{X}_{t}^{o} = \begin{bmatrix} r_{t} + \eta_{S} \\ \pi_{t} + \eta_{\Pi} \end{bmatrix} dt - \frac{1}{2} \mathcal{D}(\begin{bmatrix} \sigma_{S}' \\ \sigma_{\Pi}' \end{bmatrix} \begin{bmatrix} v_{t} & 0_{1 \times 4} \\ 0_{4 \times 1} & I_{4} + v_{t} \Gamma_{1} \end{bmatrix} \begin{bmatrix} \sigma_{S}' \\ \sigma_{\Pi}' \end{bmatrix}') dt + \begin{bmatrix} \sigma_{S}' \\ \sigma_{\Pi}' \end{bmatrix} \begin{bmatrix} v_{t} & 0_{1 \times 4} \\ 0_{4 \times 1} & I_{4} + v_{t} \Gamma_{1} \end{bmatrix}^{\frac{1}{2}} dW_{t}^{\mathbb{P}},$$

$$=: (\mu^{o} + K^{o} \mathbf{X}_{t}^{s}) dt + \Sigma^{S\Pi} (\Gamma_{0} + (\mathbf{X}_{t}^{s})_{1} \Gamma)^{\frac{1}{2}} dW_{t}^{\mathbb{P}},$$

$$(2)$$

Affine Model Structure

- Motivation choices:
 - Affine model allows us to characterize future term structures in terms of few state variables, since nominal and real spot rates are affine in state-vector X_t^s
 - Asymmetric distributions for economic variables under P and Q:
 - More realistic scenarios and better fit for market prices derivatives
 - Scenarios are generated using simulation of monthly increments; only annual values published in sets.

Extrapolation of Term-Structures

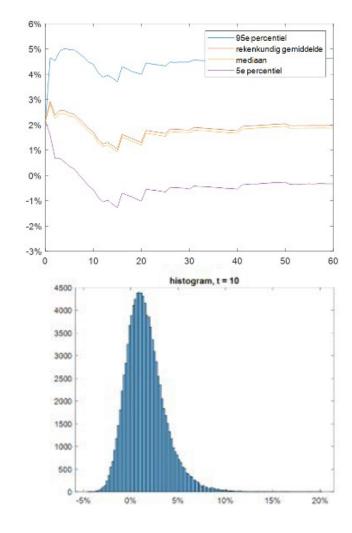
- Explicit request for advice on extrapolation of long-term interest rates
- In CP2022 model:
 - First smoothing point at maturity of 50 years (was 30 years)
 - After maturity of 50 years constant forward rate equal to

$$UFR = \frac{50 \ y_t^{obs}(50) - 30 \ y_t^{obs}(30)}{50 - 30}$$

- Motivation:
 - Sufficiently liquid market prices after 30 years
 - Small market impact, for market share Dutch pension funds

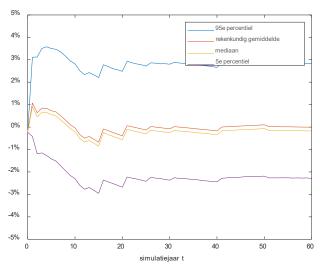
Estimation/Calibration of CP2022 Model

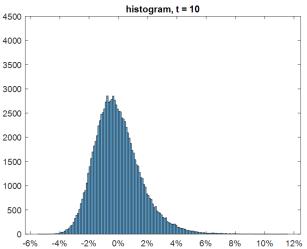
- Simultaneous P and Q calibration
- Goal of optimization:
 - Constrained maximum likelihood for historical data
 - Constrained by fit of equity, interest rate and inflation derivative prices
 - (mean square error for implied volatilities)
- Other parameter constraints during optimization:
 - Expected (log) growth stock index in equilibrium is ln(1 + 5.2%)
 - Expected (log) growth price index in equilibrium is ln(1 + 2.0%)
 - Ultimate Forward Rate given by 30/50 observed rates
 - Spot rates for 10 years to maturity, 60 years from now, are 2.0% (nominal spot) and 0.0% (real spot).
- Nominal and real term structures fitted exactly by appropriate choice of market price of risk functions



Fit of the CP2022 Model

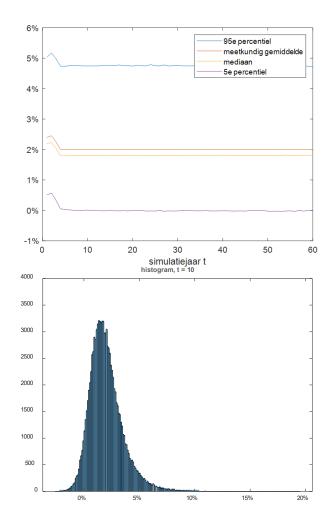
Nominal Rates (P-scenario's)


- Nominal rates (maturity 10)
 - Quantiles (top)
 - Distribution (t=10, bottom)
 - Probability distribution skewed to the right:
 - More likely to have high interest rates than low interest rates
 - In line with historical data

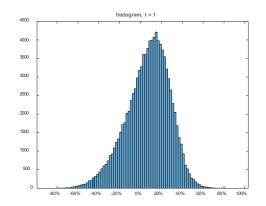


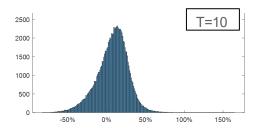
Real Rates (P-scenario's)

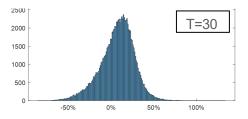
- Real rate (maturity 10)
 - Quantiles (top)
 - Distribution (t=10, bottom)
 - Probabilities skewed to the right:
 - More likely to have high interest rates than low interest rates
 - In line with historical data



NL Inflation (P-scenarios)


- NL inflation
 - Quantiles (top)
 - Distribution (t=10, bottom)
 - Probabilities skewed to the right:
 - More likely to have high inflation than low inflation
 - In line with historical data
 - Difference between euro-HICP and NL inflation

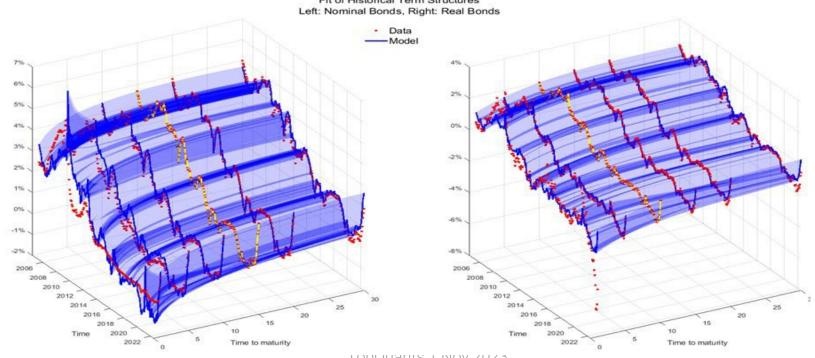




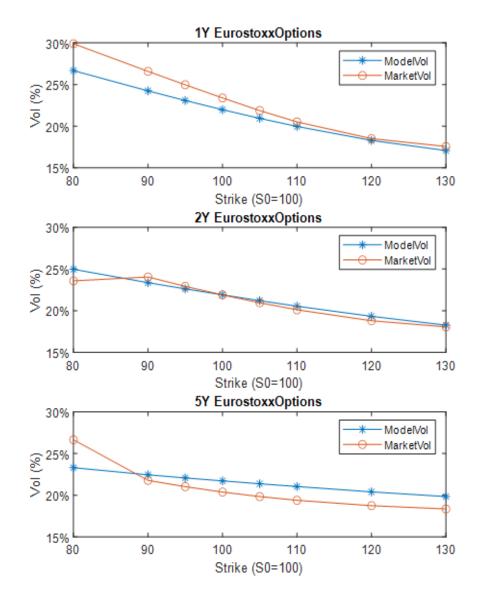
Equity returns (P-scenarios)

- Stock returns
 - Distribution (t=1, 10, 30)
 - Probability distribution skewed to the left:
 - More chance of low returns than high returns
 - In line with historical data

Correlations P-scenarios

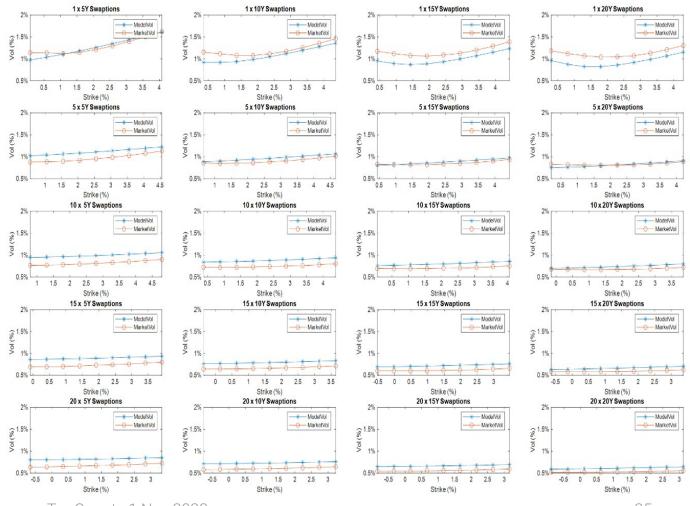

• Correlations in year-on-year returns, in simulation year 10

	NomBond10 return	RealBond10 return	Stoch.Vol	NL inflatie	Aandelen return
NomBond10 return	100%				
RealBond10 return	96%	100%			
Stoch.Vol	15%	21%	100%		
NL inflatie	-39%	-25%	27%	100%	
Aandelen return	59%	57%	2%	-42%	100%


Fit of historical interest rate data

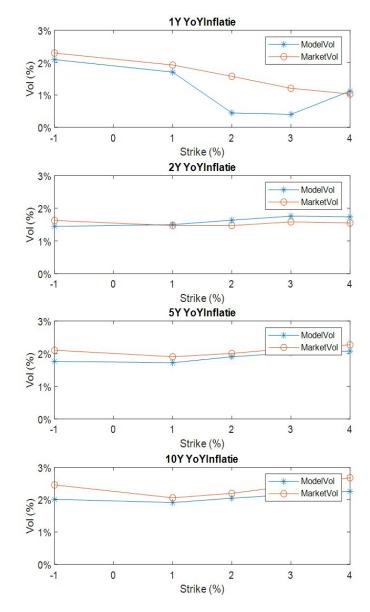
- Fit of model to observed nominal (left) and real interest rates (right)
 - Good fit for 10, 15, 20, 30 (red=data, blue=model)
 - Model cannot fit short maturities as well

Stock options pricing


- Fit of stock options
 - Implied volatility
 - Option maturity: 1y 2y 5y
 - Skewness to the left: visible as declining vola
 - Model can reproduce the vol-smiles well

Prices interest rate options (swaptions)

- Fit of swaptions
 - Implied volatility "cube"
 - Option term per row
 - 1y, 5y, 10y, 15y, 20y
 - Swap-tenor per column
 - 5y, 10y, 15y, 20y
 - Skew to the right → increasing vola's



TopQuants 1 Nov 2023

Prices inflation options

- Fit to YoY HICP inflation options
 - Implied volatility
 - Option tenor: 1 2 5 10y
 - Model can reproduce the vol-smiles fairly well
 - Lesser fit for 1y options

Summary

- Structure of CP2022 model:
 - Affine model for stock, nominal rates, inflation & stoch.vol.

- Results of P and Q fit of CP2022 model:
 - Good fit for historical data & observed prices of derivatives

