The impact of stochastic volatility on IM and MVA in a post LIBOR world

Jori Hoencamp (University of Amsterdam) Dr. Jan de Kort (ING bank, Amsterdam) Prof. Drona Kandhai (University of Amsterdam)

UNIVERSITEIT VAN AMSTERDAM

Disclaimer: The views and opinions expressed in this talk are those of the speaker and do not necessarily reflect the views or positions of any entities he represents.

PhD project

Numerical methods

Semi-static replication for IR derivatives 1.

• Decomposing callable IR derivatives into a portfolio of vanilla IR options. Article under review

2. Fully static replication for forward sensitivity computation

- Efficient prices and sensitivities along the MC path.
- Application to CVA, IM and MVA
 - Article in progress

Model risk

Impact of volatility skew modelling on MVA

- Closed-form estimates of prices and sensitivities along the MC path for vanilla IR products.
- Impact analysis on real market data.

J. H. Hoencamp, J. P. de Kort & B. D. Kandhai (2022) The Impact of Stochastic Volatility on Initial Margin and MVA for Interest Rate Derivatives, Applied Mathematical Finance, 29:2, 141-179, DOI: 10.1080/1350486X.2022.2156900

A modern approach to interest rate risk management

Collateral: Variation Margin

- Reduces exposure (EPE) en thus risk charges (CVA).
- Reflects the MtM of the trade.

Source: J. Gregory, The XVA Challenge: Counterparty Risk, Funding, Collateral, Capital and Initial Margin, John Wiley & Sons, 2020

Time (years)

- Reflects the 99% VaR on a 10-day time window

Collateral: Initial Margin

 Cover against market changes after default, when outstanding positions are not yet settled, but variation margin (collateral) is no longer updated

SIMM: standard initial margin model

$$\mathsf{IM}(t) = \sum_{g \in \mathscr{G}} \mathsf{Margin}_g(t),$$

• Margin_g(t) = VaR^{10d}_{99%}(t) $\approx \Phi^{-1}$ (9

 $\mathscr{G} = \{ \text{Delta, Vega, Curvature} \}$

99%) × std_{10d}
$$(V_t)$$

• Σ : covariance matrix of underlying risk-factors $\{\theta_1, \dots, \theta_k\}$

MVA: margin valuation adjustment

MVA is the expected lifetime cost of posting IM.

Research question 1

and MVA?

How does stochastic volatility impact the computation and volume of IM

IM and MVA?

Research question 2

• What is the impact of incorporating the new risk-free rate (RFR) benchmark?

Basic set-up

- We consider a continuous-time financial market.
- We consider an instantaneous risk-free rate r_t , which is used for discounting and indexing IR derivatives.
- We consider a money-market account associated to r_t , which compounds continuous interest, $M_t := e^{\int_0^t r_u du}$.
- We assume there exists a risk-neutral measure $\mathbb Q$ associated to the numeraire M_t .

Nodel framework

• Cheyette model, within HJM class, with stochastic volatility:

$$r_t := f(t, t) = x_t + f(0, t)$$

$$dx_t = (\phi_t - ax_t) dt + \sqrt{v_t} dW_t \qquad x_0$$

$$d\phi_t = (v_t - 2a\phi_t) dt \qquad \phi_0$$

$$dv_t = \kappa \left(\bar{v} - v_t\right) dt + \varepsilon \sqrt{v_t} dZ_t \qquad v_0$$

$$d\langle W, Z \rangle_t = \rho dt$$

- Constant volatility benchmark: Hull-White model $(v_0 := \sigma^2, \kappa = \varepsilon := 0)$
- A zero-coupon bond price P(t, T), for t < T is given by $P(t, T) = \frac{P(0, T)}{P(0, t)} \exp\left\{-\frac{1}{2}B^2(t, T)\phi_t B(t, T)x_t\right\}$

= 0= 0

= v

$$\left\{ B(t,T)x_{t}\right\}$$

Market smiles

March 31, 2020 Peak of the Covid-19 crisis —> "stressed" market

December 31, 2020 **"relaxed" market**

Model calibration

 $\sigma = 0.006690$

 $\kappa = 0.9952, \quad \bar{v} = 6.4443 \times 10^{-5}, \quad \epsilon = 2.3687 \times 10^{-2}$ $v_0 = 3.2292 \times 10^{-5}, \quad \rho = 0.1714$

Sensitivity computation: bump-and-reval

Must be repeated for each:

- MC scenario
- Time-step
- Sensitivity bucket

Delta computation: closed-form Transform model- to market sensitivities

Jacobian transformation

 $\partial \mathbf{S}$ ∂R

> • $S_k =$ Market rate (e.g. swap rate) • R_{τ_k} = Model rate

> > (e.g. zero-rate)

$$\mathbb{E}^{0,M}\left[\left(S_{0,M}(T_0)-K\right)^+\middle|\,\mathscr{F}_t\right]$$

• Short rate process: $dr(t) = (\theta(t))$

- Swap-rate, apply Ito's lemma: dS
- Quasi-Gaussian: $dS_{0,M}(t) \approx \left(\int_{1}^{1} dS_{0,M}(t)\right)$

The swap rate process

$$f) - ar(t) dt + \sqrt{v(t)} dW(t)$$

$$S_{0,M}(t) = \frac{\partial S_{0,M}(t)}{\partial r(t)} \sqrt{v(t)} dW^{A_{0,M}}(t)$$

$$\sum_{m=1}^{M'} \bar{\zeta}_m B(t, T'_m) \right) \sqrt{v(t)} dW^{A_{0,M}}(t)$$

The 'Bachelier'-version of Heston

• For
$$\begin{cases} dS(t) = \xi(t)\sqrt{v(t)}dW_1(t) \\ dv(t) = \kappa(\bar{v} - v(t))dt + \epsilon\sqrt{v(t)}dW_2(t) \end{cases}$$

• Let
$$\phi(u, t) = \mathbb{E}\left[e^{iuS(T)} \middle| \mathcal{F}_t\right]$$
, the

• Then
$$\mathbb{E}\left[\left(S(T) - K\right)^+ \middle| \mathscr{F}_t\right] = \frac{e^{-\alpha K}}{\pi} \int_0^\infty \operatorname{Re}\left(e^{-iuK} \frac{\phi(u - i\alpha, t)}{(iu + \alpha)^2}\right) du$$

ne characteristic function of S(t).

Sensitivities along the path

• Consider the *path-wise derivative method*: $\frac{\partial}{\partial R_{\iota}} \mathbb{E}\left[\left(S(T) - K\right)^{+} \middle| \mathscr{F}_{t}\right] = \mathbb{E}\left[\frac{\partial}{\partial R_{k}}\left(S(T) - K\right)^{+} \middle| \mathscr{F}_{t}\right]$

• Then it follows:

• where:
$$\Psi_0(t, K) := \mathbb{E}\left[1_{\{S(T)>K\}}\right| \mathscr{F}$$

 $\frac{\partial V(t)}{\partial R_k} = \left(\alpha_0 P(t, T_0) - \alpha_M P(t, T_M)\right) \Psi_0(t, K) + \sum_{k=1}^{M} \tau_m \alpha_m P(t, T_m) \left(\Psi(t, K) - S(t)\Psi_0(t, K)\right)$ m=1

 $\widetilde{F}_t = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \frac{\operatorname{Im}\left(e^{-iuK}\phi(u,t)\right)}{u} du$

ATM $(K = S_{0,M}(0))$

- stochastic vol - - constant vol

Delta profile - 5Yx6Y swaption

OTM $(K = K_{ATM} + 1.5 \%)$

- stochastic vol - - constant vol

ATM $(K = S_{0,M}(0))$

- stochastic vol - - constant vol

Vega profile - 5Yx6Y swaption

OTM $(K = K_{ATM} + 1.5 \%)$

- stochastic vol - - constant vol

Delta-, vegaand curvaturemargin profiles

stochastic volconstant vol

Risk-neutral swap rate distribution

The swap rate distribution under stochastic volatility exhibits...

- ... Fatter tails
- ... Higher central peaks (convex smile)
- ...Shifted to the left (skewed smile)

 $delta \propto N(d_1) \propto \mathbb{Q}(S_{0,M}(T_0) > K)$ vega / gamma $\propto N'(d_1) \propto f_{\mathbb{Q}}(S_{0,M}(T_0) = K)$

MVA for 1Yx10Y swaptions

'stressed' market

'relaxed' market

- The Cheyette model extended with a stochastic volatility component can satisfactory fit multiple implied volatility swaption smiles simultaneously.
- Both forward- and backward-looking term rates can be accommodated.
- Vanilla option prices and sensitivities can be efficiently computed along the MC paths.
- Margins for non-linear derivatives can be significantly mis-valued with a constant volatility model. Far OTM options in particular.

Take-aways

Thank you!

• **Fix-floating swap:** exchanges fixed vs. floating interest payment.

fixed rate is higher / lower than the floating rate.

• **Swaption:** Option on a forward starting swap

Vanilla IR derivatives

• Cap / Floor: exchanges fixed vs. floating interest payment, but only if the

Interest rate swap

Delta profile - 1Yx10Y ATM swap

Forward-looking (LIBOR)

- stochastic vol - - constant vol

Backward-looking (RFR)

- stochastic vol - - constant vol

Delta margin - 1Yx10Y ATM swap

'stressed' market

- - stochastic vol – constant vol

'relaxed' market

- - stochastic vol — constant vol

'stressed' market

- - stochastic vol – constant vol

Delta margin - 1Yx10Y ATM cap

'relaxed' market

- - stochastic vol – constant vol

