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The Background

Portfolio-level risk quantification and allocation in the factor-copula
model framework are needed for a few purposes in practice:

▶ Economic Capital (EC) for the Banking Book;

▶ Incremental Risk Charge (IRC) under Basel III and Default
Risk Charge (DRC) introduced in the Fundamental Review of
the Trading Book (FRTB) for the Trading Book;

▶ Collteralized Debt Obligation (CDO);

▶ Including wrong way risk in credit valuation adjustment
(CVA).



Existing Numerical Methods (1/3)

▶ Monte Carlo simulation:

- Pros: Easy to implement and flexible to cope with exotic
features;

- Cons:

- Slow in convergence, especially low accuracy at regulatory or
industry-standard high quantiles;

- Risk allocation is particularly not just time consuming, but
also instable;

- The computational complexity is linear in the number of
obligors, meaning slow speed for large portfolios.



Existing Numerical Methods (2/3)

▶ Faster alternatives in the literature about 10 or more years
ago:

- Asymptotic approximations based on simplified model
assumptions, which is considered not realistic by regulators;

- FFT-based methods: the computation is still heavy, as the
inverse Fourier transform is still based on low-order
discretization of the Fourier integral.

- Wavelets-based methods: no thorough error analysis was
provided and is difficult for the industry to embrace due to
interpretability.



Existing Numerical Methods (3/3)

▶ A faster alternative in more recent literature ([2] in 2019):

- Re-formulating the problem to the Fourier domain and then
converting the found solution thereof back to the real domain
using the COS method.

- Pros: the method is faster than MC method and covers
single-factor (later also multi-factor) Guassuan and t copula
model.

- Cons:

o The risk allocation problem, mathematically defined as the
Euler decomposition of risk quatified in terms of e.g.
Expected Shortfall (ES), and is much more difficult to solve in
practice than risk quantification, is still not sovled;

o It does not cover the hybrid copula structure, such as the
Gaussian-t hybrid structure proposed as a benchmark model in
2019 ECB Guide to Internal Models;

o A rigorous theoretical derivation is lacking for the error
convergence, since the portoflio loss distribution is discrete
and there is Gibbs phenomenon.



To Summarize - What We Miss in the Literature

▶ An efficient method to allocate the portfolio-level risk
measure, e.g., Expected Shortfal (ES), across sub-portfolio or
single credits.

▶ The existing approach to risk allocation is the importance
sampling method; however how to find the alternative
sampling distribution can be a problem numerically difficult to
sovle when the portfolio is not homogeneous and reported
uncertain is high based on simulated confidence intervals.

▶ Outdated statements: In the discussion of pricing CDO
tranches, O’kane (2008) states that ”there has been a general
trend away from Fourier methods towards recursion methods”;
and ”recursion is generally faster than Fourier methods” (i.e.,
methods based on the Fast Fourier Transform (FFT)
algorithm).



Our Goal and Approach

▶ The goal: developing a fast and generic solution method for
risk quantification and allocation (i.e. Euler decomposition of
the quantified risk) in the factor-copula model framework.

▶ The approach: we also take the Fourier apporoach, but

- we extend the existing literature to tackle the risk allocation
problem in particular, in the multi-factor-copula framework.
Risk allocation helps identify risk concentration, e.g.,
identifying the top contributors of a risk measure and
quantifying their contribution, or measuring risk contributions
of all the obligors in a specific industrial sector.

- we propose a generic approach how to use this method to cope
with hybrid copula structures, such as the Gaussian-t hybrid;

- we provide a rigorous derivation of the error convergence of
applying a filter to Fourier-cosine series expansions to recover
the distribution function of a discrete random variable. The
theoretical result defines a tighter upper bound of the error
than reported in the existing literature and is tested to agrees
with numerical results.



The Factor-copula Framework (1/3)

The random variables xn,1≤n≤N represent the creditworthiness of
the obligors in a reference portfolio of N risky obligors, and xn’s
are correlated via the common factors Z = [Z1,Z2, · · · ,Zd ]

d , i.e.
for n = 1, · · · ,N:

xn = βT
n Z+ bnεn, (1)

where

▶ βn = [βn,1, βn,2, · · · , βn,d ]T are the weighting coefficients of
the common factors Z;

▶ bn =
√

1−
∑d

i=1 β
2
n,i are the weighting coefficients of the

idiosyncratic factor εn;

▶ The common factors are assumed to be independent to the
idiosyncratic factor, i.e. Z ⊥ εn.



The Factor-copula Framework (2/3)

xn = βT
n Z+ bnεn,

▶ The obligor n defaults if and only if xn is less than the default
threshold, given as the inverse of its CDF;

▶ The common factors Z can be independent to each other or
governed by a copula, which can impose a different marginal
distribution for than that of εn;

▶ In the old literature, Gaussian copula is usually used, i.e.
Z, εn ∼ N(0, 1);

▶ In recent years, Student-t copula has been adopted in the
industry at least for benchmark purpose, i.e. Z, εn ∼ Ft(0, 1);



The Factor-copula Framework (3/3)

▶ There are factor-copula models where the systematic factors
and the idiosyncratic factors follow different distributions, e.g.

- Oh and Patten 2017
- 2019 ECB Guide to Internal Models

▶ To illustrate the generic method, in our example we assume
the systematic factors follow a d-variate t distribution. The
idiosyncratic factors remain Gaussian. (It can be made the
other way around or assumed to follow other distributions)

- A more convenient formulation of the hybrid copula model:

xn =
√
WβT

n Z+ bnεn. (2)

where W has an inverse gamma distribution, i.e,
W ∼ Ig (ν/2, ν/2). ν is the degrees of freedom.



Mathematical Formulation of the Problem-to-solve

The portfolio loss L is defined as

L =
N∑

n=1

1xn≤ξn · ln (3)

Then the problem-to-solve comprise two parts

▶ Risk quantification: Valut-at-Risk (VaR) and ES of L.
▶ Risk allocation: Euler risk allocation of VaR and ES.

- A risk measure is decomposed as the sum of risk contributions
of the obligors/sub-portfolios in the reference portfolio.

- Homogenous: scaling the risk measure by a constant changes
the risk decomposition by the same scale. E.g., increasing the
loss-at-default of all the obligors by 10% would increase
VaR/ES by 10% and the risk contribution of a certain obligor
should also increase by 10%.



Recall the COS Method (1/2)

The essence of the COS method is that, a probability density
function can be recovered from a truncated Fourier cosine series,
of which the coefficients can be extracted from the characteristics
function (ch.f), and thus, are readily available.

▶ That is, within the truncation range [a, b] of a density
function f , we have

f (x) ≈
∑′K

k=0
Ak cos

(
kπ

x − a

b − a

)
, (4)

where

Ak =
2

b − a
Re

{
φ

(
kπ

b − a

)
· exp

(
−i

kaπ

b − a

)}
with φ(·) being the ch.f. of f (x), and

∑′ indicates that the
first term in the sum is weighted by one-half.



Recall the COS Method (2/2)

To apply COS to the portfolio loss distribution of a multifactor
copula model, we

1. first numerically evaluate the ch.f at a grid of points in the
Fourier domain, i.e., kπ x−a

b−a , 0 ≤ k ≤ K .

2. then reconstruct the CDF function of the loss by COS, i.e.

F (y) =

∫ y

a
f (x)dx =

A0

2
(y−a)+

K∑
k=1

Ak
b − a

kπ
sin

(
kπ

y − a

b − a

)
(5)

It does not reply on the assumption of Gaussian distributions!



The COS Approach for Risk Quantification

The key is to solve the characteristic function (ch.f.) of the
portolio loss L. The ch.f. is derived as follows:

1. Conditional on the common factors, defaults of the obligors
are independent Bernoulli random variables. Thus the
conditional ch.f of the total loss L =

∑
ln1xn≤ξn is

E [φL(ω)|Z ] = ΠN
n=1E

[
e iωln·1εn≤αn(zn)

]
(6)

where αn(zn) =
ξn−βT

n z
bn

2. Each expectation E
[
e iωln·1εn≤αn(zn)

]
in the product is simply

given by the analytical expression of the Bernoulli ch.f.

3. Finally, the ch.f of the portfolio loss distribution can be
obtained from the conditional ch.f E [φL(ω)|Z ] by numerically
integrating out the common factors Z.



Risk Measures via the COS-recovered CDF

▶ VaR : Very simple! Given the recovered CDF of the portfolio
loss, the q-th quantile can be solved numerically, e.g., solving
P(L ≤ θ) = q via a root-searching algorithm

▶ ES: An analytical expression for ES is available, by integrating
the loss with respect to the Fourier series expansion of CDF.



Euler Risk Allocation of ES

Conditional ES decomposes the ES by the Euler principle for risk
allocation. We consider the following definition:

CESn = E [1xn≤ξn · ln| L ≥ VaRα] .

Such that

ES = E

[∑
n

1xn≤ξn · ln

∣∣∣∣∣ L ≥ VaRα

]
=

∑
n

CESn



Our Solution for Euler Risk Allocation of ES (1/2)

Apply Bayes law, we yield that

CESn = ln · P (xn ≤ ξn |L ≥ VaRα )

= ln ·
P (xn ≤ ξn, L ≥ VaRα)

P (L ≥ VaRα)

=
ln · pn
α

· P (L ≥ VaRα| xn ≤ ξn) . (7)

P (L ≥ VaRα| xn ≤ ξn) can be solved by the COS approach again
as for VaR and ES!



Our Solution for Euler Risk Allocation of ES (2/2)

The coding of the COS calculation for P (L ≥ VaRα| xn ≤ ξn) can
be easily integrated into the coding of the COS calculation for the
portfolio loss distribution.

φn,L(ω) = E
[
e iωL

∣∣∣ xn ≤ ξn

]
=

E
[
e iωL · 1xn≤ξn

]
P (xn ≤ ξn)

=
1

pn
E
[
E
[
e iωL · 1xn≤ξn

∣∣∣Z = z
]]

=
1

pn
E
[(

Πj ̸=nE
[
e
iωlj ·1εj≤αj (zj )

∣∣∣Z = z
])

· E
[
e iωln·1εn≤αn(zn) · 1εn≤αn(zn)

∣∣∣Z = z
]]

(8)



Euler Risk Allocation

Conditional VaR decomposes the VaR by the Euler principle for
risk allocation.

CVaRn = E [1xn≤ξn · ln| L = VaRα] .

Such that

VaR = E

[∑
n

1xn≤ξn · ln

∣∣∣∣∣ L = VaRα

]
=

∑
n

CVaRn

The rest of the calculation follows the same steps as for the Euler
risk allocation of ES, except that we need to evaluate the
expectation conditional on a small neighborhood around VaRα.



Our Solution for Conditional VaR
Similar to Conditional ES, Conditional VaR decomposes the VaR
by the Euler principle for risk allocation. We consider the following
similar definition:

CVaRn = E [1xn≤ξn · ln| L = VaRα] .

So that

VaR = E

[∑
n

1xn≤ξn · ln

∣∣∣∣∣ L = VaRα

]
=

∑
n

CVaRn

It then follows that

CVaRn = ln · P (xn ≤ ξn |L = VaRα )

= ln ·
P (xn ≤ ξn, L = VaRα)

P (L = VaRα)

≈ ln ·
P (xn ≤ ξn,VaRα − ϵ ≤ L ≤ VaRα + ϵ)

P (VaRα − ϵ ≤ L ≤ VaRα + ϵ)

= ln · pn ·
P (VaRα − ϵ ≤ L ≤ VaRα + ϵ| xn ≤ ξn)

P (VaRα − ϵ ≤ L ≤ VaRα + ϵ)
(9)



Gibb’s Phenomenon

However, there is an issue - L is a discrete random variable, which
gives rise to the Gibb’s phenomenon in the Fourier-series.

▶ Gibb’s phenomenon: very slow or no convergence of the series
due to discontinuities in the function.

▶ Appears as overshooting and undershooting close to the
discontinuous points.

▶ It is an issue for all eigen decomposition based methods.



Example of Bernoulli Distribution



Solutions to Gibb’s Phenomenon

▶ Solutions in existing literature:
- Fourier space filters: enhancing the decay rate of the given
Fourier coefficients without reducing the accuracy.

o The Lanczos filter: σ(η) = sin(πη)
πη

o Higher order filters, such as raised cosine filter, exponential
filter, Daubechics filter, etc.

- Filters in physical space: localizing the information that
determines the Fourier coefficients by means of convolution.

- In essence, these two types of solutions are equivalent.



Adjusted Formulas with Filters

▶ Portfolio loss density function is a discrete function and the
CDF is a piece-wise constant function. Thus, Gibb’s
phenomenon can have impact on the accruacy when VaR level
is close to the discountinuous points.

▶ We chose Fourier space filters, as the only modification
needed is on the Fourier coefficients.

▶ The adjusted COS formula for CDF of portfolio loss:

F (y) ≈ A0

2
(y−a)+

K∑
k=1

Akσ

(
k

K

)
b − a

kπ
sin

(
kπ

y − a

b − a

)
(10)



Error Analysis - 1/7

▶ Denote the possible realizations of L by
{0 ≤ L0 ≤ L1, · · · , Lm, · · · ,≤ LM ≤ π}.

▶ Applying the COS expansion to have

fL(x) =
∑′∞

k=0
Ak cos kx

with

Ak =
2

π
Re {φ(k)} =

2

π
Re

{
M∑

m=0

e ikLmpm

}

=
2

π

M∑
m=0

cos(kLm)pm (11)

where pm is the probability of L = Lm.



Error Analysis - 2/7

▶ Thus the Fourier cosine expansion of the probability density of
L is

fL(x) =
∑′∞

k=0

2

π

M∑
m=0

cos(kLm)pm cos kx

=
M∑

m=0

pm
∑′∞

k=0

2

π
cos(kLm) cos kx

=
M∑

m=0

pmfm(x) (12)

where

fm(x) =
∑′∞

k=0

2

π
cos(kLm) cos kx



Error Analysis - 3/7

▶ Integrating fL from 0 gives the COS CDF of L

FL(x) =
M∑

m=0

pm

[
1

π
x +

∞∑
k=1

2

kπ
cos(kLm) sin kx

]

=
M∑

m=0

pmFm(x) (13)

where

Fm(x) =
1

π
x +

∞∑
k=1

2

kπ
cos(kLm) sin kx



Error Analysis - 4/7

Then we truncate the number of series term to K and modify the
series coefficients by the filter to have

f σL (x) =
M∑

m=0

pmf
σ
m(x) (14)

and

F σ
L (x) =

M∑
m=0

pmF
σ
m(x) (15)

where

f σm(x) =
∑′K

k=0

2

π
σ(k/K ) cos(kLm) cos kx

and

F σ
m(x) =

1

π
x +

K∑
k=1

2

kπ
σ(k/K ) cos(kLm) sin kx



Error Analysis - 4/7
The key insight here is that on [−π, π],

F0(x) =
1

π
x +

∞∑
k=1

2

kπ
sin kx

is the Fourier series expansion of the function

H0(x) =

{
1 if 0 ≤ x ≤ π

−1 if − π ≤ x < 0

and that

Fm(x) =
1

π
x +

∞∑
k=1

2

kπ
cos(kLm) sin kx

is the Fourier series expansion of the function

Hm(x) =


1 if Lm ≤ x ≤ π

0 if− Lm < x < Lm

−1 if − π ≤ x < Lm



Error Analysis - 6/7

The convergence speed of the Fourier series expansion with
spectral filter for a piecewise constant function is governed by the
convergence order of the filter, as proven in [Vandeven 1991]:

▶ If we have a function f /∈ Cp−1, ie, if f (y) has a jump
discontinuity at one or more points of order smaller than, or
equal to, p − 1, the following estimate holds:

f σN (y)− f (y) ∼ O
(
N1/2−p

)
.

Given that the CDF of L is a linear combination of Hm,
weighted by pm, it follows that F

σ
L converges to the true CDF

of L at the speed as described above.



Error Analysis - 7/7

Recall that there is one extra layer of approximation: the cosine
coefficients Ak is obtained via numerical integration based on
Clenshaw-Curtis rule after we truncate the integration range with a
truncation error at the level of TOL. Let us denote the error term
from this numerical integration part as ϵ(N,TOL), which depends
on the the number of integration points N and the range
truncation tolerance TOL. Then it can be shown that this error
term propogates in our approximation of the CDF as follows:

F̂ σ
m(x) = F σ

m(x) + O(K ) · ϵ(N,TOL).



Numerical Example 1: A Small portfolio

To observe the behavior of the COS method, we first constructed a
simple portfolio with 10 obligors, one of which creates name
concentration. We consider a two-factor Gaussian copula, and a
hybrid copula with Student-t distribution for the systematic factors
and Gaussian distribution for the idiosyncratic factors.

▶ Number of obligors: 10

▶ βn,1 = 0.8, βn,2 = 0.4

▶ p1 = 0.01, pn = 0.001, n = 2, · · · ,N
▶ l1 = 10, ln = 1, n = 2, · · · ,N
▶ Degree of freedom in the t Copula: 8.



CDF Conditional on Default of One Name



Numerical Example 2: A Large portfolio

▶ Number of obligors: 1000

▶ Ratings are uniformly sampled from AAA, AA, A, BBB, BB,
B and CCC.

▶ SP PDs.

▶ Losses are uniformly sampled from [10, 1000].

▶ Create a few name concentration of CCC obligors by
multiplying the losses by a factor of 50 or 10.

▶ Factor loadings βn,1, βn,2 are randomly drawn from [0, 1].

▶ Degree of freedom in the t copula: 8



CDF of Portfolio Loss
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VaR of Portfolio Loss
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ES of Portfolio Loss
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CES of Portfolio Loss
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Performance



Conclusions

▶ Key insight - we can solve the problem of both risk
quantification and allocation in the Fourier domain with the
help of the COS method.

▶ For dimension less than 4, this method is possible for
real-time calculations, such as loan pricing.

▶ Current and future research: Tackle the curse of dimension via
various techniques.
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