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Stochastic control problem

Mean variance (MV) optimal asset optimization is well-known.

We focus on realistic asset dynamics, as well as objective functions, in line
with rational preferences of an investor.

We explore how options can be used as complement to risky assets and
bonds to improve the performance, for general objective functions.

Represent the strategy with a sequence of neural networks, with as the loss
function an empirical objective function.

Optimization is performed only once for the entire problem. Time-consistent
and time-inconsistent problems can be treated similarly.
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Adding options and gain flexibility

A trader is allowed to trade in a riskfree bond, Nstocks ∈ N stocks, and
Noptions ∈ N options.

S = (St)t∈[0,T ] is an RNstocks−valued time-continuous Markov process on a
complete probability space (Ω, F , A).

The bond is B = (Bt)t∈[0,T ] and for i ∈ {1, 2, . . . ,Noptions}, V i (t,St ;K ) is
an option with S as underlying (single stock or a basket of stocks), at time
t ∈ [0,T ], terminating at T , with K ∈ R the strike price.

We set the initial values to unity at t = 0, i.e., for j ∈ {1, 2, . . . ,Nstocks} and

i ∈ {1, 2, . . . ,Noptions}, we set S j
0 = 1, V i (0,S0) = 1 and B0 = 1.
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Stochastic control problem

αk = (αk
t )t∈[0,T ] is the process describing the amount in stock k and when

k = 0, the amount in the bond.

Total wealth of the portfolio stemming from the stock and the bond holdings,

xt = α0
tBt +

Nstocks∑
k=1

αk
t S

k
t = A0

t +
Nstocks∑
k=1

Ak
t . (1)

Since the portfolio is self-financing,

α0
t =

1

Bτ(t)

(
xτ(t) −

Nstocks∑
k=1

αk
τ(t)S

k
τ(t)

)
, (2)

where τ(t) = maxs{s ∈ T | s ≤ t}, i.e., the most recent trading date.

The return on investment is then given by

RSB(S ;α) = xT − x0. (3)
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Stochastic control problem

Denote the amount of option i in the portfolio by βi . So,

yt =
Noptions∑
i=1

βiV i (t,St ;K
i ),

Return on the investment from the static option position:

RO(S ;β) = yT − y0. (4)

Summing up (3) and (4), we obtain the total return

R(S ;α, β) = RSB(S ;α) + RO(S ;β). (5)
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Market frictions

We add transaction costs as well as a non-bankruptcy constraint and for the
trading strategies, given by α and β, we introduce leverage constraints.

In discrete time, the value of the stocks and bond can then be re-written as

xtn+1 = xtn + α0
tn(Btn+1 − Btn) +

Nstocks∑
k=1

αk
tn(S

k
tn+1

− Sk
tn). (6)

The sum of the transaction costs for stock k :

TCk =
N∑

n=1

Cer(T−tn)(αk
tn − αk

tn−1
)Sk

tn , (7)

where 100× C ∈ R+ is a percentage of the size of the transaction.

We do not pay transaction costs immediately, but instead at the end of the
trading period, with appropriate interest rate.
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Constraints:

No-bankruptcy: When the stocks plus bond value is non-positive, the
portfolio is liquidated.

xtn+1 = xtn + I{x>0}(xtn)

(
α0
tn(Btn+1 − Btn) +

Nstocks∑
k=1

αk
tn(S

k
tn+1

− Sk
tn)

)
, (8)

where I{x>0}(·) is the indicator function.

No short-selling of stocks, for t ∈ [0,T ] and 1 ≥ k ≥ Nstocks, αk
t ≥ 0.

No leverage: We cannot short sell the bond, i.e., for t ∈ [0,T ], α0
t ≥ 0.

No bankruptcy: If xtn ≤ 0, all positions are liquidated and for t ≥ tn, xt = xtn .

Positivity of the bond and the stocks part of the portfolio - x0 ≥ 0.
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Objective function

A good quality objective function is able to represent the investor’s
preferences of how much risk would be acceptable for a certain level of
potential profit.

To penalize downside risk, we maximize the average of the 10% worst
outcomes; to encourage upside potential, we maximize the average of the
10% best outcomes. Expected shortfall can be defined by Value at Risk,

ES+p (R) = E[R |R ≤ VaRp(R)], ES−p (R) = E[R |R ≥ VaRp(R)].

A typical objective function would then be

U = E[R]− λ1Var[R] + λ2ES
−
p1(R) + λ3ES

+
p2(R), (9)

with λ1, λ2, λ3 ∈ R+ describing the risk preference and p1, p2 ∈ (0, 1)
controlling the sizes of the left and right tails.
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Stochastic control problem

Figure: Example of probability density function for terminal wealth. Red, blue, green
represent the lower expected shortfall, mean and higher expected shortfall.
Gray area is the mean plus/minus the variance.
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Full optimization problem

So far, α and β are the trading strategies.

We add the set of strike prices, K = (K 1,K 2, . . . ,K options), as part of the
trading strategy, π = (α, β,K ).

Figure: Returns against stock value at terminal time T . Left: Return for investing in a
stock, buying one unit of option 1 and selling one unit of option 2. Right: Returns for
three different combinations of the products;the red line is the classical bull-call spread.
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Stochastic control problem

With objective function U(π) = u
(
L[R(S ;π)]

)
, initial wealth x IC0 ∈ R+ and

Π the allowed trading strategies (taking all trading constraints into account).

maximize
π∈Π

= U(π), where,

R(S ;π) = RSB(S ;π) + RO(S ;π)

RSB(S ;π) = xT (S ;π)− x0(π)−
Nst∑
k=1

TCk , RO(S ;π) = yT (S ;π)− y0(π),

xT (S ;π) = x0 +
N∑

n=0

I{x>0}
(
xtn (S ;π)

)[
α0
tn (Btn+1 − Btn ) +

Nst∑
k=1

αk
tn (Stn+1 − Stn )

]
,

x0 = x IC
0 − y0(π), yT (S ;π) =

Noptions∑
i=1

β iV i (T ,ST ; K i ),

y0(π) =
Noptions∑
i=1

β iV i (0, S0 ; K
i ).

(10)
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Stochastic control problem

Given S0 and assuming known drift and diffusion and jump coefficients µ, σ
and J, we employ,

dSt = µ(t,St)dt + σ(t,St)dWt + J(t,St)dXt ,

where Xt represents a jump process.

Let tN = T and for 0 ≤ i ≤ N − 1, ti < ti+1, generate M ∈ N+ samples of
the Nstocks−dimensional asset process S . Asset k , realization m, at time
tn ∈ TN is Sk

tn(m), etc.

We use empirical distributions for L[R(S ;π)] in a Monte–Carlo fashion.

Discrete scheme is approximated by letting deep neural networks represent
trading strategies and optimizing with a gradient-decent algorithm.
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Neural network approximation

The trading strategy π is represented by a sequence of neural networks.

A neural network is a mapping, ϕ( · ; θ) : RDin → RDout

, with θ containing all
trainable parameters of the network.

Number of layers is L ∈ N; for layer ℓ, the number of nodes is Nℓ ∈ N.
The weight matrix, between ℓ− 1 and ℓ, is wℓ ∈ RNℓ−1×Nℓ ; the bias bℓ ∈ Rℓ;

The (scalar) activation function aℓ : R → R and the vector activation
function aℓ : RNℓ → RNℓ , which, for x = (x1, x2, . . . , xNℓ

), is defined by

aℓ(x) =

 aℓ(x1)
...

aℓ(xNℓ
)

 ;

⇒ The output of the network should obey the trading constraints, which are
managed by choosing an appropriate activation function in the output layer.
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Neural networks representing the trading strategy

The trading strategy π consists of three parts; i) the static amount invested
in each option β, ii) the static strike prices of the options K , and iii) the
dynamic amount invested in each stock α.

β and K are decided at t = 0 and with a deterministic initial wealth x IC0 , we
have a deterministic representation for β and K .

α may depend on previous performance, which is affected by randomness
through the stock process (a dynamic strategy).

For the dynamic trading strategy, we use a deep neural network taking the
current wealth as input and outputs the stock allocation.

The admissible trading strategies are ΠNN = {Πβ ,ΠK ,Πα0 ,Πα1 , . . . ,ΠαN−1},
where Πα1 , . . . ,ΠαN−1 , may depend on the stock.
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Optimization problem with neural networks



maximize
θ∈ΘNN

= UM(θ), where M i.i.d. random variables are distributed according to,

R(S ; θ) = RSB(S ; θ) + RO(S ; θ)

RSB(S ; θ) = x̂tN − x̂0 −
Nstocks∑
k=1

TCk , RO(S ; θ) = ŷtN − ŷ0,

x̂tN = x̂0 +
N∑

n=0

I{x>0}
(
x̂tn

)[
α̂0
n(Btn+1 − Btn ) +

Nstocks∑
k=1

α̂k
n(Stn+1 − Stn )

]
, x̂0 = x̂ IC

0 − ŷ0,

ŷtN =
Noptions∑
i=1

β̂ iV i (T , StN ; K̂ i ), ŷ0 =
Noptions∑
i=1

β̂ iV i (0, S0 ; K̂
i ),

α̂0
0 = x̂0 −

Nstocks∑
k=1

α̂k
0 , (α̂1

0, . . . , α̂
Nstocks

0 )⊤ = aα0(θα0), β̂ = aβ(θβ), K̂ = aK (θK ),

α̂0
n =

1

Btn

(
x̂tn −

Nstocks∑
k=1

α̂k
nS

k
tn

)
, (α̂1

n, . . . , α̂
Nstocks

n )⊤ = ϕ(x̂tn ; θ
αn ).

(11)
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General neural network settings

We use a sequence of neural networks, as tools to solve the problem.

The number of training samples is Mtrain = 222, the batch size Mbatch = 212,
the number of epochs Mepoch = 10 and the number of layers L = 4.

For the interior layers, i.e., ℓ ∈ {2, 3}, set the number of nodes to Nℓ = 20
and the activation functions aℓ(·) = ReLU(·).

⇒ Dinput = 1 and Doutput, as well as the activation function in the output layer,
depend on the trading constraints and are specified for each specific problem.

Initial learning rate is 0.01. After two batches, it decreases by a factor
exp(−0.5) for each new batch.
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Classical continuous mean-variance optimization

Classical MV problem: asset process is geometric Brownian motion.

Trading is carried out without transaction costs, i.e., setting C = 0.

There are no constraints and trading in the options is not allowed.

The objective function is given by

U(θ) = E [xT ]− λVar[xT ].

where λ > 0 controls the risk aversion.

Closed-form expression for the optimal allocation as well as an optimal mean
and variance of the terminal wealth. T = 2,N = 20, r = 0.06, λ = 1.104

a =


0.08
0.07
0.06
0.05
0.04

 , σ =


0.23 0.05 −0.05 0.05 0.05
0.05 0.215 0.05 0.05 0.05
−0.05 0.05 0.2 0.05 0.05
0.05 0.05 0.05 0.185 0.05
0.05 0.05 0.05 0.05 0.17

 . (12)
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Stochastic control problem

The optimal value of the objective function is approximately 1.1637.

Figure: Upper: Convergence of the loss to the analytic counterpart with respect to the
number of training epochs. Comparison with reference solution. Lower: Comparison of
the empirical pdfs and reference. Comparison of the empirical CDFs and the reference.
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Beyond MV, with market frictions and jumps

Consider the full generality of the asset model, as well as transaction costs,
no bankruptcy constraint and trading in European call and put options.

The parameter values are reused and λJ = 0.05, µJ = (0, . . . , 0)⊤,
ΣJ = diag(0.2, . . . , 0.2), NB = 1 and C = 0.005.

An interpretation of C is as a penalizing term for too heavy reallocation
(which is something that for instance pension funds want to avoid).

U(θ) = E[R]− λ1Var[R] + λ2ES
−
p1(R) + λ3ES

+
p2(R).

p1 = 0.01 i.e., we penalize low values of the expected return of the worst 1%
performance of the portfolio. For the upper tail, we maximize the expected
return of the 5% best outcomes, p2 = 0.95.

The weights are set to λ1 = 0.552, λ2 = 0.276 and λ3 = 0.110.
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Problem specific neural network settings

We set βmax = 1 (the maximum amount of allocation into the options is
100% of the initial wealth).

We use a slight modification of the activation function for this.

Then, the option allocation range is [0, βmax], while keeping the sum of the
allocations into each option to [0, βmax].

For the strike prices, we use K low = (0.75, 0.75 . . . , 0.75)⊤ and
K high = (1.25, 1.25 . . . , 1.25)⊤, i.e., setting the range for strike prices
between 75% to 125% of the stock price at the initial time.

We set αlow
n = −2xn and αhigh

n = 2xn implying that we can allocate into each
stock between −200% and 200% of the total value of the stocks and bond.
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Evaluation of the results

The algorithm returns a dynamic strategy for the bond and stocks, the static
strategies for the allocations into the options and a strike for each option.

Figure: Left: Average allocation to stocks, bond and options over time. Right: Average
allocation to stocks, bond and options over time for each stock. Asterisks and bullets
represent call and put option holdings, respectively.
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Stochastic control problem

The strike prices are optimized by the neural networks to 0.75 for all call
options and 1.25 for all put options, i.e., deep in the money.
For the best performing outcomes, the main option contribution comes from
call options; for the worst performing outcomes from put options.

Figure: Contribution to the portfolios for terminal wealth less than 1.03 (33% of the
outcomes), between 1.03 and 1.12 (41%), and above 1.12 (26%).
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Stochastic control problem

With options, we observe i) a thinner left tail, ii) a higher density around the
expected terminal wealth, and iii) a fatter right tail.

The first and last items are beneficial since the objective function aims to
prevent large losses (by the lower expected shortfall term) and encourages
large gains (by the upper expected shortfall term).

Regarding a comparison with the MV-strategy, in contrast to our strategies,
we encounter a fatter left than the right tail, which is non-desirable.
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Stochastic control problem

For all measures, but the variance, the portfolio with options performs best.

By the strategy with options, transaction costs decrease by > 60% compared
to the strategy without options and > 90% compared to the MV-strategy.

This is beneficial since less aggressive re-allocation is desirable for a fund.

E[R] Var[R] ES+p1(R) ES−p2(R) U(θ∗) Tr. cost

With options 1.146 0.081 0.971 2.18 1.61 0.386%
Without options 1.140 0.045 0.931 1.93 1.58 1.01%
MV strategy 1.146 0.077 -0.208 1.48 1.21 3.98%

Table: For the MV-strategy, λ is set to make the mean coincide with the mean obtained
from the strategy with options. The trading cost is a percentage of the initial wealth.
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Stochastic control problem

The market does not behave exactly as the model.

Test the algorithm’s robustness for model miss-specification, applying the
strategies with higher and lower volatility of the underlying asset process.

⇒ In the high volatility case, we multiply σ by two and in the low volatility case
we divide σ by two.
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Stochastic control problem

Most notable is the lower expected shortfall which expresses a loss of 172.8%
and 98.4% and the trading costs at 10.1% and 2.74% for the higher and
lower volatilities, respectively.
Options in the portfolio are beneficial when the volatility increases and less
beneficial when the volatility decreases.
Variance is larger with options, due to the fatter right tail of the distribution.

E[R] Var[R] ES+p1(R) ES−p2(R) U(θ∗) Trading cost

Evaluation with increased volatility for the underlying assets (σ 7→ 2× σ).
With options 1.318 0.660 0.763 3.268 1.540 0.838%
Without options 1.350 0.175 0.734 2.635 1.532 1.23%
MV strategy 1.081 0.674 -0.728 1.460 0.668 10.1%
Evaluation with decreased volatility for the underlying assets (σ 7→ 0.5× σ).

With options 1.074 0.0262 0.969 1.620 1.506 0.261%
Without options 1.143 0.0160 0.957 1.548 1.569 0.636%
MV strategy 1.163 0.0569 0.0160 1.487 1.301 2.74%

Table: Comparison of three strategies. For the MV-strategy, λ is set to make the mean
coincide with the mean obtained from the strategy with options. The trading cost, as a
percentage of initial wealth reflects the volatility of portfolio re-allocations.
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Conclusions

The choice of objective function should reflect the true incentives of a
rational trader

Adding options makes shaping of the distribution of the terminal wealth more
flexible due to the asymmetric distribution of option returns.

Options significantly reduce re-allocation and in turn the trading cost;

A sequence of neural networks produces high quality allocation strategies in
high dimensions (many assets, options and strike prices for each option).

Extension to trading options in a dynamic setting is straightforward if we
have access to an efficient option valuation along stochastic asset trajectories.
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