Liquidity Risk in the Sovereign Credit Default Swap Market

Rob Sperna Weiland

University of Amsterdam

Rabobank Model Validation

18-11-2015

UNIVERSITY OF AMSTERDAM

イロト イヨト イヨト イヨト

Problem Description

Problem:

• Estimate sovereign default probabilities.

Proposed solution:

• Extract market-implied default probabilities from Credit Default Swap (CDS) data.

Problem Description

Problem:

• Estimate sovereign default probabilities.

Proposed solution:

• Extract market-implied default probabilities from Credit Default Swap (CDS) data.

Figure: Schematic representation CDS contract => <=>

Rob Sperna Weiland (UvA)

Liquidity Risk in the Sovereign CDS Market

18-11-2015 3 / 31

CDS premia may be "contaminated" by price-distorting factors such as *liquidity risk*:

- Not many market participants.
- Over-the-counter market \Rightarrow search costs.
- Large observed bid-ask spreads.

CDS premia may be "contaminated" by price-distorting factors such as *liquidity risk*:

- Not many market participants.
- Over-the-counter market \Rightarrow search costs.
- Large observed bid-ask spreads.

Research Goals

Quantify the effect of liquidity risk on sovereign CDS premia.

2 Extract implied PD's (and account for the liquidity risk component).

Figure: General methodology

Rob Sperna Weiland (UvA)

Liquidity Risk in the Sovereign CDS Market

18-11-2015 5 / 31

1 Model Set-Up

- 2 Calibration
- 3 Decomposition of the CDS Premium
- 4 Extracting Default Probabilities
- 5 Conclusions

Intensity-based model:

- Default time is the first jump time of some jump process (e.g. Poisson process).
- Default probability is driven by an intensity process.
- Closely related to short-rate interest rate models.

Separate formulas for bid and ask premia with

- the same default components
- and different liquidity discount factors.

We have the following *stochastic* processes:

- r(t): risk-free interest rate.
- $\lambda(t)$: default intensity process.
- $\gamma^{bid/ask}(t)$: bid/ask liquidity intensity processes.

They appear as the following 'discount' factors:

We obtain the following model prices:

$$s^{bid}(t,T) = \frac{(1-R) \cdot \sum_{i=1}^{n} \mathbb{E}^{\mathbb{Q}} \left[\left(\bar{P}(t,T_{i-1}) - \bar{P}(t,T_{i}) \right) \bar{D}(t,T_{i}) \middle| \mathcal{F}_{t} \right]}{\sum_{i=1}^{n} \delta_{i} \mathbb{E}^{\mathbb{Q}} \left[\bar{D}(t,T_{i}) \bar{P}(t,T_{i}) \bar{L}^{bid}(t,T_{i}) \middle| \mathcal{F}_{t} \right]}$$

and

$$s^{ask}(t,T) = \frac{(1-R) \cdot \sum_{i=1}^{n} \mathbb{E}^{\mathbb{Q}} \left[\left(\bar{P}(t,T_{i-1}) - \bar{P}(t,T_{i}) \right) \bar{D}(t,T_{i}) \middle| \mathcal{F}_{t} \right]}{\sum_{i=1}^{n} \delta_{i} \mathbb{E}^{\mathbb{Q}} \left[\bar{D}(t,T_{i}) \bar{P}(t,T_{i}) \bar{L}^{ask}(t,T_{i}) \middle| \mathcal{F}_{t} \right]},$$

where $\delta_{i} = T_{i} - T_{i-1}$ and $\delta_{1} = T_{1} - t$.

・ 回 ト ・ 三 ト ・

- The risk-free short-rate process is independent from the liquidity and default intensity processes.
- The risk-free discount curve is given by the (implied) swap rate curve.

$$s^{ask}(t,T) = \frac{(1-R) \cdot \sum_{i=1}^{n} D(t,T_i) \mathbb{E}^{\mathbb{Q}} \left[\left(\bar{P}(t,T_{i-1}) - \bar{P}(t,T_i) \right) \middle| \mathcal{F}_t \right]}{\sum_{i=1}^{n} \delta_i D(t,T_i) \mathbb{E}^{\mathbb{Q}} \left[\left| \bar{P}(t,T_i) \bar{L}^{ask}(t,T_i) \right| \mathcal{F}_t \right]}$$

and

$$s^{bid}(t,T) = \frac{(1-R) \cdot \sum_{i=1}^{n} D(t,T_i) \mathbb{E}^{\mathbb{Q}} \left[\left(\bar{P}(t,T_{i-1}) - \bar{P}(t,T_i) \right) \middle| \mathcal{F}_t \right]}{\sum_{i=1}^{n} \delta_i D(t,T_i) \mathbb{E}^{\mathbb{Q}} \left[\left| \bar{P}(t,T_i) \bar{L}^{bid}(t,T_i) \right| \mathcal{F}_t \right]},$$

$$\begin{pmatrix} \mathrm{d}\lambda(t) \\ \mathrm{d}\gamma^{bid}(t) \\ \mathrm{d}\gamma^{ask}(t) \end{pmatrix} = \begin{pmatrix} 1 & g_{bid} & g_{ask} \\ f_{bid} & 1 & \omega_{ask,bid} \\ f_{ask} & \omega_{bid,ask} & 1 \end{pmatrix} \begin{pmatrix} \mathrm{d}x(t) \\ \mathrm{d}y^{bid}(t) \\ \mathrm{d}y^{ask}(t) \end{pmatrix}$$

• $x(t), y^{bid}(t)$ and $y^{ask}(t)$ are *pure* default and liquidity intensities and are *independent*.

Example of affine process dynamics:

$$dx(t) = (\alpha - \beta x(t))dt + \sigma \sqrt{x(t)} dW_x^{\mathbb{Q}}(t) dy'(t) = \sigma' dW_{y'}^{\mathbb{Q}}(t), \quad l \in \{bid, ask\}.$$

Analytical Solution to Discount Factors

Recall bid price formula:

$$s^{bid}(t,T) = \frac{(1-R) \cdot \sum_{i=1}^{n} D(t,T_i) \mathbb{E}^{\mathbb{Q}} \left[\left(\bar{P}(t,T_{i-1}) - \bar{P}(t,T_i) \right) \middle| \mathcal{F}_t \right]}{\sum_{i=1}^{n} \delta_i D(t,T_i) \mathbb{E}^{\mathbb{Q}} \left[\left[\bar{P}(t,T_i) \bar{L}^{bid}(t,T_i) \middle| \mathcal{F}_t \right]},$$

By our set-up:

$$\begin{split} \mathbb{E}^{\mathbb{Q}}\left[\left.\bar{P}(t,T_{i})\bar{L}^{bid}(t,T_{i})\right|\mathcal{F}_{t}\right] &= \mathbb{E}^{\mathbb{Q}}\left[\left.e^{-\int_{t}^{T_{i}}\lambda(s)\mathrm{d}s}e^{-\int_{t}^{T_{i}}\gamma^{bid}(s)\mathrm{d}s}\right|\mathcal{F}_{t}\right] \\ &= \mathbb{E}^{\mathbb{Q}}\left[\left.e^{-\int_{t}^{T_{i}}(1+f_{bid})\times(s)\mathrm{d}s}\right|\mathcal{F}_{t}\right] \\ &\times \mathbb{E}^{\mathbb{Q}}\left[\left.e^{-\int_{t}^{T_{i}}(1+g_{bid})y^{bid}(s)\mathrm{d}s}\right|\mathcal{F}_{t}\right] \\ &\times \mathbb{E}^{\mathbb{Q}}\left[\left.e^{-\int_{t}^{T_{i}}(\omega_{ask,bid}+g_{ask})y^{ask}(s)\mathrm{d}s}\right|\mathcal{F}_{t}\right] \end{split}$$

Pricing formulas are reduced to bond price formulas!

Rob Sperna Weiland (UvA)

Liquidity Risk in the Sovereign CDS Market

18-11-2015 13 / 31

Here we have

$$\mathbb{E}^{\mathbb{Q}}\left[\left.e^{-\int_{t}^{T_{i}}(1+f_{bid})\times(s)\mathrm{d}s}\right|\mathcal{F}_{t}\right] = A_{1}(t,T_{i},1+f_{bid})e^{-A_{2}(t,T_{i},1+f_{bid})(1+f_{bid})\times(t)},$$

where

$$\begin{aligned} A_1(t, T_i, 1+f_{bid}) &= \frac{2\alpha}{\sigma^2} \log \left(\frac{2\phi(1+f_{bid})e^{\phi(1+f_b)+\beta(T_i-t)/2}}{(\phi(1+f_{bid})+\beta)(e^{\phi(1+f_{bid})(T_i-t)}-1)+2\phi(1+f_{bid})} \right), \\ \phi(1+f_{bid}) &= \sqrt{\beta^2+2(1+f_{bid})\sigma^2}, \\ A_2(t, T_i, 1+f_{bid}) &= \frac{2(e^{\phi(1+f_{bid})(T_i-t)}-1)}{(\phi(1+f_{bid})+\beta)(e^{\phi(1+f_{bid})(T_i-t)}-1)+2\phi(1+f_{bid})}. \end{aligned}$$

Cox, Ingersoll, Ross (CIR) bond price formula.

We have the following parameters we need to calibrate:

- 5 process dynamics parameters $(\alpha, \beta, \sigma, \sigma^{bid}, \sigma^{ask})$.
- 6 correlation factor parameters $(f_{bid}, f_{ask}, g_{bid}, g_{ask}, \omega_{ask, bid}, \omega_{bid, ask})$.
- The pure intensity values $(x(t), y^{bid}(t), y^{ask}(t))$ for every day t in our sample (challenge).

1 Model Set-Up

2 Calibration

3 Decomposition of the CDS Premium

4 Extracting Default Probabilities

5 Conclusions

- Test our model on Brazil and Turkey.
- Bid and ask premia of 2, 3, 5 and 10 year CDSs (so 8 quotes per day).
- 1200 days of data (period 01-06-2009 until 28-02-2014).

Proposed Calibration Procedure (2)

Rob Sperna Weiland (UvA)

Liquidity Risk in the Sovereign CDS Market

18-11-2015 18 / 31

In each grid point, we

- **(**) fix the values of the process parameters (here $\alpha, \beta, \sigma, \sigma^{ask}, \sigma^{bid}$), and
- 2 calibrate the other parameters assuming the fixed process parameters.

The "best" grid point gives the parameter values.

Problems:

- Dimension of the grid is equal to number of process parameters.
- Number of points blows up exponentially with more general processes (more parameters).

Problems:

- Dimension of the grid is equal to number of process parameters.
- Number of points blows up exponentially with more general processes (more parameters).

Tricks to speed up the calibration:

- Parallel programming.
- "Zooming into the grid" instead of dense grids.
- Use search algorithm over the grid.

Model Fit

- Brazil: average relative pricing error of 2.05%.
- Turkey: average relative pricing error of 2.44%.

1 Model Set-Up

- 2 Calibration
- 3 Decomposition of the CDS Premium
 - 4 Extracting Default Probabilities

5 Conclusions

- We define the pure credit risk premium s^{cred} by setting $\bar{L}^{bid/ask} = 1$ (i.e., $\gamma^{bid/ask} = 0$). In this case the (model) bid and ask premia are equal.
- We define the liquidity risk premium as $s^{liq} = s^{mid} s^{cred}$, where s^{mid} is the model-implied mid-premium.

Decomposition 2 Year CDS Mid Premium							
Brazil			Turkey				
Credit Part	mean	0.6175	Credit Part	mean	0.5783		
	Std.	0.0249		Std.	0.0277		
	Dev.			Dev.			
	Max	0.6677		Max	0.6398		
	Min	0.5494		Min	0.5181		
Liquidity Part	mean	0.3825		mean	0.4217		
	Std.	0.0227	Liquidity Dart	Std.	0.0272		
	Dev.		Liquidity Fart	Dev.			
	Max	0.4417		Max	0.4802		
	Min	0.3379		Min	0.3602		

Table: Decomposition of 2 year CDS premia. Entries are denoted as a fraction of the mid-premium.

1 Model Set-Up

- 2 Calibration
- 3 Decomposition of the CDS Premium
- 4 Extracting Default Probabilities

5 Conclusions

- So far, we have worked under the risk-neutral probability measure \mathbb{Q} .
- We are interested in the real-world default probability and, therefore, we need do an analysis under the real-world probability measure \mathbb{P} .

"I think you should be more explicit here in step two."

Liquidity Risk in the Sovereign CDS Market

Average One-Year Default Probabilities Brazil and Turkey						
Brazil			Turkey			
Our	Rabobank	Our	Rabobank			
result		result				
27.84	-	56.44	-			

Table: Estimated one-year default probabilities Brazil and Turkey (in basis points) using average intensities.

Our estimates are very close to Rabobank's estimates!

1 Model Set-Up

- 2 Calibration
- 3 Decomposition of the CDS Premium
- 4 Extracting Default Probabilities

- We developed a methodology to extract default probabilities from CDS premia, while accounting for liquidity risk.
- Our model allows for an easy and natural decomposition of the CDS premia into credit and liquidity components.

Main findings:

- Liquidity risk has a large impact on sovereign CDS premia.
- Our PD estimates are close to Rabobank's estimates.

Questions?

▲□ ▶ ▲ ■ ▶