Central Clearing and Systemic Risk: A Network Approach

Svetlana Borovkova

VU Amsterdam and DNB

May 26, 2015

Svetlana Borovkova

Central Clearing and Systemic Risk: A Network Approach

The setup of the study: Financial System CCP and Default Mechanisms Simulation Results General observations

Financial Systems and networks Examples of Random Networks

Benefits of Central Clearing

- Novation and netting
- Elimination of counterparty credit risk
- Transparency of OTC derivatives markets
- But: many participants argue that credit risk is replaced by liquidity risk
- The question is: what are the benefits of central clearing for financial system stability?

- 4 同 ト 4 ヨ ト 4 ヨ ト

The setup of the study: Financial System CCP and Default Mechanisms Simulation Results General observations

Financial Systems and networks Examples of Random Networks

Network approach

- Simulation-based
- Maximally realistic construction of hypothetical systems
- Networks of CMs and their clients
- Compare default characteristics of a hypothetical system with and without CCP

The setup of the study: Financial System CCP and Default Mechanisms Simulation Results General observations

Financial Systems and networks Examples of Random Networks

Why networks?

Figure: Example of a financial system

Image: A mathematical states and a mathem

The setup of the study: Financial System CCP and Default Mechanisms Simulation Results General observations

Financial Systems and networks Examples of Random Networks

Network approach

- "Skeleton" of the network: nodes (FIs) and (directed) links
- "Weights" of the links: size of lending/borrowing and derivatives exposures
- Type of external shock the network is exposed to
- Sources of systemic risk: contagion due to connections AND simultaneous shock to assets

Financial Systems and networks Examples of Random Networks

Types of Networks/Graphs

- **Complete Networks** homogeneous; used in past empirical studies.
- **Random Networks** (Erdös-Rényi Graphs): each edge is present with probability *p* homogeneous.
- **Tiered random networks**: two types of nodes (highly connected / less connected) non-homogeneous.
- **Core-Periphery structure**: extreme interconnectedness of core nodes.

The setup of the study: Financial System CCP and Default Mechanisms Simulation Results General observations

Financial Systems and networks Examples of Random Networks

Random Networks

Figure: Erdös-Rényi Graphs: n = 25

(a) Random p = 0.2

(b) Tiered Structure $p_l = 0.5, p_s = 0.16$

・ロト ・回ト ・ヨト ・ヨト

The setup of the study: Financial System CCP and Default Mechanisms Simulation Results General observations

Financial Systems and networks Examples of Random Networks

Random Networks Cont.

Figure: Erdös-Rényi Graphs: n = 100

(a) Random p = 0.2

(b) Tiered Structure $p_l = 0.5, p_s = 0.17$

< 日 > < 同 > < 三 > < 三 >

The setup of the study: Financial System CCP and Default Mechanisms Simulation Results General observations

Financial Systems and networks Examples of Random Networks

Core-Periphery Networks

Figure: Core-Periphery Structure: n=25, assume that 10% of GCMs control 80% of the OTC derivatives market

(b) Core-Periphery Structure

(日) (同) (日) (日) (日)

Financial Systems and networks Examples of Random Networks

Core-Periphery Networks Cont.

Figure: Core-Periphery Structure: n=100, again, assume that 10% of GCMs control 80% of the market

(a) Tiered Structure

(b) Core-Periphery Structure

< 日 > < 同 > < 三 > < 三 >

Balance Sheets Derivatives portfolio

Types of Networks

- $\bullet\,$ Random homogeneous networks, e.g., p=0.2
- Tiered networks: 10% of FIs are "large" and well-connected $(p_l = 0.5, p_s = 0.16 \text{ so that } p = 0.2)$
- Core-periphery networks: assume e.g., that 10% of FIs control 80% of derivatives market. Then e.g., for $p_l = 0.6$, $p_s \approx 0.02 0.03$.
- Total size of the banking system, derivatives market and overall connectivity is the same for all networks this is important for comparison

イロン 不同 とくほう イロン

Balance Sheets Derivatives portfolio

Typical FI's Stylized Balance Sheet

Assets	Liabilities
Fixed Assets A_i^F	Capital $L_i^C =: c_i$
Liquid Assets A_i^L	Deposits L_i^D
$\begin{array}{c} {\rm Interbank} & {\rm Assets} \\ A_i^{IA} & \end{array}$	Interbank Liabilities A_i^{IL}

Margins M_i

Balance Sheets Derivatives portfolio

Clearing what: Interest Rate Swaps

- For each FI, we determine a portfolio mix of interest rate swaps (e.g., 5 tenors)
- A 1:1 relation between size of FI and portfolio size
- IRS values are determined from the simulated IR curve: choose your favorite IR curve model
- Each FI has 50% chance of holding fixed or floating leg of a swap
- Counterparties are chosen randomly, but taking into account tiering structure

(日) (同) (日) (日) (日)

Balance Sheets Derivatives portfolio

Swap Value Simulation

Figure: Simulated path of $V_{swap}(t,T)$

External shock: to IR curve, until first FI defaults (3 or more σ s)

< 🗇 > < 🖃 >

CCP's default waterfall

Figure: Robust default waterfall as applied by e.g., SwapClear

Svetlana Borovkova Central Clearing and Systemic Risk: A Network Approach

(日)

-

- Variation margins
- Initial margins: based on 99% 5-day VaR, held in segregated (CM) or omnibus (clients) accounts
- **Default fund contribution:** stressed market conditions; fixed percentage of initial margins (10%), held in omnibus account
- CCP has limited own capital ($\leq 5\%$)
- CCP can opt for top-up to DF if needed; only operating CMs are considered

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Default Dynamics

- At time t there is a shock to the balance sheet of party i (e.g., via an adverse IR change).
- Fl *i* defaults if its required collateral $(VM_{i,t} + IM_i + DFC_i)$ is greater than its capital.
- We call this *fundamental default* (can be more than one at any time).
- Losses are absorbed by VM_i and IM_i , then by the default fund (own contribution, then that of the rest).
- CCP transfers all IRSs of the defaulted FI to other FIs (at the market value), charging new *IM*s, *VM*s and possibly extra DF contributions.
- This can lead to further (*contagion*) defaults and the process is repeated.

Random Graphs Tiered Structure Core-Periphery Networks

Simulations results

All the results are CONDITIONED on the first fundamental default, so all probabilities are CONDITIONAL probabilities!

In 2-d figures: Blue lines: CCP cleared situation, Red: bilateral system.

- 4 同 6 4 日 6 4 日 6

Random Graphs Tiered Structure Core-Periphery Networks

Homogeous Network

Figure: Defaults as a function of n

(b) Average Total Capital Loss

Random Graphs Tiered Structure Core-Periphery Networks

Homogeous Network

Figure: Probability of CCP Failure vs. n

P

Random Graphs Tiered Structure Core-Periphery Networks

Tiered Network

Figure: Defaults as a function of n

(b) Average Total Capital Loss

<ロト <部ト < 注ト < 注ト

Random Graphs Tiered Structure Core-Periphery Networks

Tiered Network

Figure: Probability of CCP Failure vs. n

< 同 ▶

Random Graphs Tiered Structure Core-Periphery Networks

Tiered Network : Conditioning on a default of a LARGE CM

Figure: Defaults as a function of n

< 日 > < 同 > < 三 > < 三 >

Random Graphs Tiered Structure Core-Periphery Networks

Tiered Network : Conditioning on a default of a LARGE CM

Figure: Probability of CCP Failure vs. n

Random Graphs Tiered Structure Core-Periphery Networks

Core-Periphery Networks: Conditioning on a default of a LARGE CM

Figure: # of defaults vs. system size n and shock size

- 4 同 6 4 日 6 4 日 6

Random Graphs Tiered Structure Core-Periphery Networks

Core-Periphery Networks : Conditioning on a default of a LARGE CM

Figure: Average Total Capital Loss vs. system size n and shock size

Image: A image: A

Random Graphs Tiered Structure Core-Periphery Networks

Core-Periphery Networks : Conditioning on a default of a LARGE CM

Figure: Probability of CCP Failure vs. system size n and shock size

- ₹ 🖬 🕨

- The effect of CCP clearing on the financial system is complex, highly dependent on the system's structure and the source of fundamental default (SIFI or not).
- Our simulation results indicate that smaller, peripheral FIs are generally sacrificed (unevenly punished) for financial stability.
- For financial stability, it seems more useful to focus on the capitalization of **core CMs**, to prevent their (fundamental) default, rather than to debate RM measures for CCPs.

Building a real financial network

- Two-layer network: interbank balance sheet exposures and derivatives contracts
- Balance sheet exposures: some information, but mostly in aggregate form
- Algorithms such as Maximum Entropy allows us to fill in exposure matrix, preserving CP structure and overall characteristics of real financial networks

- 4 同 6 4 日 6 4 日 6

Derivatives transactions data

- EMIR: registration of all derivatives transactions in TRs as of Feb 2014.
- Sources: DTCC, other TRs, AFM, ...
- In theory: an ideal source of information on derivatives transactions (counterparty, type, size, maturity, collateral,â)
- In reality: a total mess: gaps, errors, identifiers.
- But also legal: e.g., DNB observes only contracts of participants located within Dutch jurisdiction

- 4 同 6 4 日 6 4 日 6

- Qualitative or semi-quantitative information: central banks questionnaire
- TARGET II: all interbank payments
- Possible to separate payments that correspond to derivatives transactions
- Build interbank network according to aggregated daily interbank payments

Further information

- s.a.borovkova@vu.nl
- Systemic Risk and CCPs: A Network Approach, SSRN white paper
- http://www.mejudice.nl/video/detail/svetlana-borovkovaover-een-nieuw-systeemrisico

同 ト イ ヨ ト イ ヨ ト