Experiments and Models of Non-Rational Behaviour

Cars Hommes

CeNDEF, University of Amsterdam and Tinbergen Institute

DNB Top Quants Event May 28, 2014, Amsterdam

CeNDEF, University of Amsterdam

DNB Top Quants Event, 28 May, 2014

Main Ingredients of the Talk

- financial markets and the economy as complex evolving systems of interacting agents
- behavioral theory of heterogeneous expectations of boundedly rational individuals
- empirical validation of individual (micro) and aggregate (macro) behaviour through laboratory experiments

Economy as Expectations Feedback System

beliefs/expectations

realizations

mapping from all heterogeneous beliefs to price realizations

$$p_t = F(p_{1,t+1}^e, p_{2,t+1}^e, \cdots, p_{H,t+1}^e)$$

simple mapping from average beliefs into price realizations

$$p_t = f(\frac{1}{H}\sum_{h=1}^{H} p_{h,t+1}^e) = f(\overline{p_{t+1}^e})$$

rational solution: beliefs on average equal to realizations

 $p^{\ast}=f(p^{\ast}):$ perfectly self-fulfilling expectations

Learning to Forecasts Laboratory Experiments

- individuals only have to forecast price, ceteris paribus,
 e.g. with all other behavior assumed to be rational,
 demand/supply derived from profit/utility maximization
- computerized trading yields market equilibrium price, consistent with benchmark model, e.g.
 - cobweb model
 - asset pricing model

Experiments

- New Keynesian macro model
- advantage: clean data on expectations
- Challenge: universal theory of heterogeneous expectations

Learning to Forecast Experiments (Ctd)

Subjects' task and incentive

- forecasting a price for 50 periods
- better forecasts yield higher earnings

Subjects know

- only qualitative information about the market
- \triangleright price p_t derived from equilibrium between **demand** and **supply**
- type of expectations feedback: positive or negative
- **past information**: at time t participant h can see past prices (up to p_{t-1}), own past forecasts (up to $p_{t,h}$) and own earnings (up to $e_{t-1,h}$)

Subjects do not know

- exact equilibrium equation, e.g. $p_t = f(\bar{p}_{t+1}^e)$ or $p_t = f(\bar{p}_t^e)$
- exact **demand schedule** of themselves and others
- number and forecasts of other participants

Example Computer Screen Experiment

CeNDEF. University of Amsterdam

< □ > < 同

Cars Hommes

Three Different Experimental Settings

- asset pricing experiment (with/without robot trader)
 - two-period ahead
 - positive feedback

$$p_t = \frac{1}{1+r} \Big((1-n_t) \frac{p_{t+1,1}^e + \dots + p_{t+1,6}^e}{6} + n_t \, p^f + \bar{y} + \varepsilon_t \Big)$$

• **positive** versus **negative** feedback; one-period ahead $p_t = f(p_t^e)$:

- ▶ **positive** feedback: linear, slope +0.95;
- **negative** feedback: linear, slope -0.95.
- New Keynesian Macromodel: aggregate inflation and output depend on individual forecasts of both inflation and output (and monetary policy rule):

$$(\pi_t, y_t) = F(\pi_{t+1}^e, y_{t+1}^e)$$

DNB Top Quants Event, 28 May, 2014

Cars Hommes

CeNDEF, University of Amsterdam

Conclusions

Asset Pricing Experiment Simulation Benchmarks

CeNDEF, University of Amsterdam

DNB Top Quants Event, 28 May, 2014

Conclusions

Asset Pricing Experiment Simulation Benchmarks

CeNDEF, University of Amsterdam

Cars Hommes

Asset Pricing Experiment (with Robot Trader)

Cars Hommes

CeNDEF, University of Amsterdam

Asset Pricing Experiment

Strong coordination of individual forecasts and errors

CeNDEF, University of Amsterdam

Cars Hommes

Conclusions

Groups with (Almost) Monotonic Convergence prices, individual predictions and individual errors

CeNDEF, University of Amsterdam

Cars Hommes

2 Groups with Perpetual Oscillations

prices, individual predictions and individual errors

CeNDEF, University of Amsterdam

Cars Hommes

2 Groups with Damping Oscillations

prices, individual predictions and individual errors Group 4 Group 7 Price Price Predictions Predictions -10 -30

CeNDEF, University of Amsterdam

Cars Hommes

Summary Results Asset Pricing Experiment

Results are inconsistent with rational, fundamental forecasting

One would like to explain:

- three qualitatively different patters
 - (almost) monotonic convergence
 - constant oscillations
 - damping oscillations
- coordination of agents in their predictions
- no homogeneous expectations model fits these experiments need heterogeneous expectations model

DNB Top Quants Event, 28 May, 2014

Cars Hommes

CeNDEF, University of Amsterdam

Estimation of Individual Predictions

... for the last 40 periods

in converging groups agents use adaptive expectations

 $p_{t+1}^e = w \, p_{t-1} + (1 - w) \, p_t^e$

often agents used simple linear rules anchor and adjustment rule

$$\begin{array}{lll} p_{t+1}^e = & \alpha + \beta_1 \, p_{t-1} + \beta_2 \, p_{t-2} \\ \text{e.g.} & (60 + p_{t-1})/2 + (p_{t-1} - p_{t-2}) \\ \text{or LAA} & (p_{t-1}^{av} + p_{t-1})/2 + (p_{t-1} - p_{t-2}) \end{array}$$

in particular trend-extrapolating rules

$$p_{t+1}^{e} = p_{t-1} + \gamma \left(p_{t-1} - p_{t-2} \right) \qquad 0.4 \le \gamma \le 1.3$$

CeNDEF, University of Amsterdam

Cars Hommes

Examples of Individual Predictions and Switching

Group 7, participant 3

CeNDEF, University of Amsterdam

DNB Top Quants Event, 28 May, 2014

Heterogeneous Expectations Heuristics Switching Model Anufriev and Hommes, AEJ:Micro 2012

- agents choose from a number of simple forecasting heuristics
- ► adaptive learning: some parameters of the heuristics are updated over time, e.g. anchor = average
- performance based reinforcement learning: (extension of Brock and Hommes, *Econometrica* 1997) agents evaluate the performances of all heuristics, and tend to switch to more successful rules; impacts are evolving over time

Four forecasting heuristics

adaptive rule

ADA
$$p_{1,t+1}^e = 0.65 \, p_{t-1} + 0.35 \, p_{1,t}^e$$

weak trend-following rule

WTR
$$p_{2,t+1}^e = p_{t-1} + 0.4 \left(p_{t-1} - p_{t-2} \right)$$

strong trend-following rule

STR
$$p_{3,t+1}^e = p_{t-1} + 1.3 \left(p_{t-1} - p_{t-2} \right)$$

anchoring and adjustment heuristics with learnable anchor

LAA
$$p_{4,t+1}^e = 0.5 p_{t-1}^{av} + 0.5 p_{t-1} + (p_{t-1} - p_{t-2})$$

Evolutionary Switching with Asynchronous Updating

performance measure of heuristic i is

$$U_{i,t-1} = -(p_{t-1} - p_{i,t-1}^e)^2 + \eta U_{i,t-2}$$

parameter $\eta \in [0,1]$ – the strength of the agents' memory

discrete choice model with asynchronous updating

$$n_{i,t} = \delta n_{i,t-1} + (1-\delta) \frac{\exp(\beta U_{i,t-1})}{\sum_{i=1}^{4} \exp(\beta U_{i,t-1})}$$

parameter $\delta \in [0, 1]$ – the inertia of the traders parameter $\beta \ge 0$ – the intensity of choice

CeNDEF, University of Amsterdam

Cars Hommes

Stochastic Simulations (one step ahead forecast)

Anufriev and Hommes (2012)

- uses past experimental data
- **same information** as participants in experiments

Parameters fixed at: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

- initial fractions equal, i.e. $n_{ht} = 0.25$
- initial prices as in experiments

DNB Top Quants Event, 28 May, 2014

Group 5 (Convergence)

experimental prices simulated prices, predictions and errors

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

CeNDEF, University of Amsterdam

Cars Hommes

Group 6 (Constant Oscillations)

experimental prices simulated prices, predictions and errors

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

CeNDEF. University of Amsterdam

Cars Hommes

Group 7 (Damping Oscillations)

experimental prices simulated prices, predictions and errors

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

CeNDEF. University of Amsterdam

Cars Hommes

Muth (1961) on Deviations from Rationality [emphasis added]

Allowing for **cross-sectional differences** in expectations is a simple matter, because their **aggregate affect is negligible** as long as the deviation from the rational forecast for an individual firm is **not strongly correlated with those of the others**. Modifications are necessary only if the **correlation of the errors is large** and depends systematically on other explanatory variables.

key issues:

- are individual expectations coordinated?
- if so, do individuals coordinate on a rational or a boundedly rational aggregate outcome?

This can be tested in Learning to Forecast Experiments

CeNDEF, University of Amsterdam

Positive versus Negative Feedback Experiments Heemeijer et al. (JEDC 2009); Bao et al. (JEDC 2012

negative feedback (strategic substitute environment)

$$p_t = 60 - \frac{20}{21} \left[\sum_{h=1}^{6} \frac{1}{6} p_{ht}^e\right] - 60 + \epsilon_t$$

positive feedback (strategic complementarity environment)

$$p_t = 60 + \frac{20}{21} \left[\sum_{h=1}^{6} \frac{1}{6} p_{ht}^e - 60 \right] + \epsilon_t$$

- different types of shocks ϵ_t : small resp. large permanent shocks
- **common feature**: same RE equilibrium
- only difference: sign in the slope of linear map +0.95 vs -0.95

DNB Top Quants Event, 28 May, 2014

Negative vs. Positive Feedback Experiments

Prices, Individual Predictions and Errors

Positive Feedback: coordination on "wrong" non-RE price; coordination on **almost self-fulfilling equilibria**

Cars Hommes

DNB Top Quants Event, 28 May, 2014

CeNDEF, University of Amsterdam

Negative Feedback Experiment: Session 1

▲□▶▲圖▶★ 国▶★ 国▶ 国 のQC

CeNDEF, University of Amsterdam

Cars Hommes

Price in Experiments with Negative Feedback (6 groups) (Heemeijer et al., JEDC 2009)

Cars Hommes

CeNDEF, University of Amsterdam

Positive Feedback Experiment: Session 1

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のQ@

CeNDEF, University of Amsterdam

Cars Hommes DNB Top Quants Event, 28 May, 2014

Prices in Experiments with Positive Feedback (7 groups)

(Heemeijer et al., JEDC 2009)

Cars Hommes

DNB Top Quants Event, 28 May, 2014

CeNDEF, University of Amsterdam

Positive vs Negative Feedback; Small Shocks Heuristics Switching Model Simulations

positive feedback: trend-followers amplify fluctuations

Cars Hommes

DNB Top Quants Event, 28 May, 2014

CeNDEF, University of Amsterdam

Conclusion: Empirical and Exper. Data consistent with Complexity View

- simple heterogeneous expectations heuristics switching model fits experimental micro and macro data quite nicely
- heterogeneity and heuristics switching explains
 - path dependence
 - different behaviour in different feedback systems
 - different behaviour in aggregate variables of same economy
- agents are behaviorally rational at the individual level: they use simple heuristics such as adaptive expectations, trend following rules and anchor and adjustment rules
- positive feedback markets are "irrational" due to coordination on "wrong" price and survival of (almost) self-fulfilling trend following strategies