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A reversal of ECB policy in the next months,
what consequence for our positions?

A continued rise in volatility during these next weeks,
how to quantify the effects?



PLAN

Develop a framework to handle these questions as follows.

Step 1. Establish construction methods for no-arbitrage
dynamics of term-structures’ of forward rates (forward
interest-rates, forward relized-variances, etc).

Step 2. Refine the Step 1 mechanisms to assure compliance
of instantaneous rates (short rate, instantaneous realized-
variance, etc) with empirically observed stylized facts:

e finite time-horizon mean reversion.

e finite time-horizon positivity (respectively
boundedness from below).

 non-exploding prices of corresponding primary
instruments (bonds,variance swaps, etc).

Step 3. Assure tractability of the constructions, as well as its
transfer to derivatives valuation and hedging ... in concrete
cases, moreover.

Benchmark for tractability: Vasicek model of short-rate.
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MODELLING FRAMEWORK: HIGHLY-STYLIZED, 1.

Work on a fixed filtered probability space (2, F,F = (Fu)uejo, 7+, )
where T™* € [0, o0.

e Given: the family of forward-rate processes
(fe,1)tef0,1] > for every T € [0,T™) .
o Consider: the family of term-structure processes, for every
T € [0,T*) given by
(Ye,r)teom» where Yir = g( Jie.r) frudu)
“for fixed and sufficiently nice g : (range of the f;7) — R.

e Step 1. Construction of (F,Q)-no-arbitrage dynamics by
asking the validity of the expectations hypothesis

M\ﬁm., H@@ﬁQAm\H|mwv;rW\fwwv te ﬁcvmqv
where
Ry= [ fosds, ue(0,T7).

for any T € [0,T*], on measure change from P to an equiva-
lent Q.



MODELLING FRAMEWORK: HIGHLY-STYLIZED, Il.
Continue in the setting of Step 1.

e Focus on the instantaneous rate, namely

A%ﬁuﬁvimﬁovﬂ*v )
and look at its (F, P)-dynamics.

o Step 2. Effect compliance with stylized facts of the Step 1
construction by asking validity of:

e Mean reversion (MR). We have
EBQ%\H* .\vd:: — .\Q\H*vﬂ* 3

in a cup or L! sense w.r.t. P.
o Positivity (P.). For fixed ¢ > 0, we have

\.@vz > Bwﬁﬁov %ouﬁl.mw )

for every u € [tg,To] € [0,7%), in a P-a.s. sense.



MODELLING FRAMEWORK: HIGHLY-STYLIZED, Ili.

e Specialization of the modelling framework by choice of g:

A«mm:%gém:m:nm

modelling v — g=id.

Amsﬁm«mmﬁ-qmﬁm

modelling v > g=1/ep.

e For concreteness’ and definiteness’ sake: Focus in the rest
of the talk on

g=1/exp,

the interest-rate case.



MODELLING FRAMEWORK, TRANSLATED

Construct short rate r as a process on a fixed filtered probability
m_uwnm Abu.ﬂv T - Aoﬂﬁvﬁwov.wv“

r = (Tu)u>0,

with the construction to satisfy 4 conditions:

e No-arbitrage: There is an EMM (equivalent martingale mea-
sure) @ ~ P such that for all points in time ¢ < T

time-t price of

P = | maturityT | = B9[exp (~ [ rodu) | 7]
zerobond
here then f;, = —0r log(P.r)|r=. and vice versa.

e FIT: The (observed) time-0 prices (Po,r)r>0 satisfy
ﬁoﬂlmmw [exp ( %o rydu)], T > 0.

e Stylized Fact (P.): Have r, > min{0, fo,, —¢}, for all u €
?OQMJ& E MJ*V C _NVO

e Stylized Fact (MR): Have existence (in ucp or L') and (P.)
O.m. rr+ = :Ed\‘v\.ﬁ* Ty -



BENCHMARK MODEL, I: NO-ARBITRAGE.

The Vasicek model postulates short rate dynamics of the form
Ty = TNy -+ \J%Q.mgw&d\d\mv 1t e mNO

driven by (F, P)-Brownian motion W, with vol structure for fixed
a, o € R-go given by:

o5t =0exp(—a(t—s)), s<t.
Conditions No-arbitrage and FIT hold with the choice:
my = fort+ [o 0rOw(—Xs )|, ds
= fort 5(@/a)(1-e 2,

for all t € R>q, where fo; := —0.Fo ;.



BENCHMARK MODEL, II: STYLIZED FACTS.
Continue with Zo;m_\_u:_\mmm and FIT to hold.

e Properties |: Have

To ~ N (Lo, vary,),

where p,, = m,, and var, = 52/(2a)(1 — e~2%%),

e Properties Il: Assuming existence of fq oo = limy oo fo,t,
we have existence of 7o, = limy—so0 7o With

Too ~ N (oo, VaTso )

where f1oo = limy 00 fiu = fo.00+(1/2)(7/a)? and

Vare, = liMy oo Vary, = 02/(2a).

e Problem 1: Positivity of r, and r., systematically violated!

e Problem 2: Exploding bond prices, otherwise!
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BENCHMARK MODEL, lil: (P.) failure.

Figure 1. P(ro.<0) in dependency on Vasicek parameters a and b=57/a.
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DRAWING ON WORK OF EBERLEINs

To overcome negativity problems of Vasicek short rates we make
use of work of Eberlein et al’s as follows.

Basic idea: Keep the overall form of the Vasicek model dynam-
ics for r but exchange as its driver Brownian motion W by a
general semimartingale L.

More precisely, consider dynamics

Ty = Qg + h@i&mlT \qu@&hf t € R>o,

with L a (F, P)-semimartingale and (here as well as in the rest
of the talk!) a: Rso — R and «, 0 : R%; — R sufficiently nice

(processes or even just) functions.

Problem: Already No-arbitrage is unachievable in general by
structural reasons: L is too general a semimart!

Remedy: Have to restrict the generality of L and resort to con-
structing appropriate semimartingale drivers L.
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DRIVING PROCESSES, |I.

Basic insight: Already the class of ﬁ__|mm§m§m_.ﬁm=mm_mm fur-
nishes appropriate semimartingale drivers L.

The construction of Pll-semimartingales L is in terms of
triples (b, c,v), to be called PII-triples, where:

e bc hH A_NNOV‘

loc

e cc L{ _(R>g) and ¢ >0,

loc

e v = {vs(dzr) x ds}sso is a (predictable) random measure
on R x Ry with all (Jz|? A 1)vs(z) integrable on R,

and is (morally) effected by associating with (b, c,v) the process
given by:
L= [Tbids+ L+ L, teRxo,

where b% = b; + (z—14<1}) * vs and where
c ¢
t — %o /\M&S\mu

L = [ [qa(u—v)(dz,ds),

for any ¢ € R>q, are the continuous martingale (Gaussian) part of
L and the purely-discontinuous martingale part of L respectively
(here p is the jump measure).
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DRIVING PROCESSES, Il.

e The driving processes L to be chosen encompass Brownian
motion with drift.

o Starting from an arbitrary Pli-triple (b, ¢,v), where:
e b= @mvmwo € Ly, A_“NNOV,

“loc

@ C— AQmeNo c Li A_NNOV and ¢ >0,

loc
e v = {v,(dz) x ds}s>o is a (predictable) random measure
on R x Ry with all (Jz|* A 1)vs(z) integrable on R,

e they are characterized by the Fourier transforms of their laws:

Elexp(zL,)] = exp m®hg@vv “
where

. Op.(2) = bov& V1 s(2)ds,
with

%h,mmwv = N@mlTWNwmm + bm AQNH|H;1NH:&_MH$ N\A&&.g &MV ,

for complex z in some open neighborhood of v/—1R.
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PEDAGOGICAL DEVICE re (EMM)

We consider —initially— the situation:

Q=2r,

where the (given) statistical measure
P is taken to also furnish an EMM.

Will later indicate how to get beyond this
convenient but particular arrangement!
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STEP 1: THE SHORT-RATE MECHANISM, |.
e Idea: Assure dynamics with No-arbitrage by adaption of drift.

e Theorem 1 (Short rate mechanism): There is a construction
to associate with (sufficiently nice) pairs (o, (b,c,v)) of
e 0:R%, — R volatility structure,
e (b,c,v) Pll-triple
a dynamics of the short rate r satisfying No-arbitrage and FIT.
Explicitly the construction proceeds by adaption of the drift
by way of the definition

Ty = Myt + %%O.mh&hmv t e —”NNOV
where L = L(b,c,v) and

me = fo+ + ,ﬁ m%@?%lmm,i_ﬂnw ds
setting ¥s 1 = bﬂ o du and with
s 2 s
Or,s(2) =2 [, by du+ 5 o cudu
+ %ow Jg (€7 =1—21y <1y v(dz, ds)
for complex z in a suitable open neighborhood of \/—1R.
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STEP 1: THE SHORT-RATE MECHANISM, II.

e The key step for establishing the S-R M is to assure validity of
the expectations hypothesis, namely

P H@@T%@Ai bﬂﬂzgﬁv “,HL , tel0,T],
forany T' < T™.

e The key tool for this is furnished by the following result.

Lemma: For Pll-semimarts L we have

E|exp :%J f(s)dLs) , Fi] = exp Abﬂ 91,s(f(s)) ds)
for any t € [0,T] and any cag map f : [t,T] — Dom(Or 1).

e Credits: The S-R M provides a perspective on the vintage 2005
U Freiburg PhD thesis of W. Kluge, written under the direction
of E. Eberlein; this perspective was developed in the 2009 MSc-
thesis of L. Slamova.
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'STEP 2: ADD MEAN-REVERSION, 1.

+ime

Eltr,—cilce

-

TE 3

e LATE
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STEP 2: ADD MEAN-REVERSION, Il

Address finite-horizon mean-reversion of (r,),>0 by asking,
for fixed T* € (0,00] and ¢ > 0, the following condition:

(MR) E[jrs —r] <e, for every t € [T*—6,T"],
for some 6 = 6(r,T%,¢) > 0.

Task: Incorporate (MR) in the Step 1 no-arbitrage correspon-
dence (o, L) — r(o, L) of Theorem 1.

Theorem 2: If L has first (and second) order moments w.r.t.
the chosen EMM @, then r(o,L) also satisfies (MR) under 4
additional conditions centered on o being contained in L*(0, co)
and L?(0,00) with ‘good’respective Cauchy-condition-type con-
vergence properties.
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STEP 2: ADD MEAN-REVERSION, III.

Range of applicability of the Theorem 2 incorporation of (MR)
in the Step 1 no-arbitrage correspondence.

e Processes:

— Does not apply to a-stable processes L, but

— does apply to every process L whose moment generating
function z — E[exp (zL1)] is finite on an open neighborhood
of vV/—1R, as, e.g., for L € {GIG,NIG}.

e Vol-structures:

— Does not apply to o = const > 0, but
— does apply to the vol-structures given by

(1) 0su = 0 exp(—a(u—s)),
14+~u
1+vs’

(2) 0su = 0exp(—a(u—s))

for any s < wu, for arbitrary fixed real &, a > 0 and ~.
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STEP 2: ADD POSITIVITY, I.

Starting from arbitrary but sufficiently regular pairs

(0, L) where o vol-structure on 0, T* ]2
L Pll-semimartingale

we have constructed

‘e a no-arbitrage correspondence of (f;.)scp,, the forward-
rate processes,

e which induces a no-arbitrage short-rate process r = r(o, L)

e that satisfies finite-horizon mean-reversion (MR), under in-
tegrability conditions on o, L.

We wish to incorporate in these correspondences in addition

e compliance with rising-rate scenarios, respectively falling-rate
scenarios.
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STEP 2: ADD POSITIVITY, Il
Stressing scenarios is a new feature.
By a rising-rate scenario we mean:
e the specification of a fixed period of time [to,To] € [0,T).

e the specification of a short-rate process © = (7)ucjo,r+) With
7|1to,1] INCreasing w.r.t. the statistical measure P, i.e., 1, < 7y»
on (Q, F,F, P) for every u < u* in [tg, To].

e validity, for some € > 0, of the P-almost-surely condition

T = fuu > min{0, fo.—¢},

(Pe) for every u € [tg, Tp].

Falling-rate scenarios conceive as mirror images of rising-rate
scenarios.
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STEP 2: RISING-RATE SCENARIO, I.
Will demonstrate incorporation of rising-rate scenarios
in the situation when L = IG(§, v)-process

in an as explicit and as strict as possible form of the no-arbitrage
correspondence

a plan which boils down to work done in the 2009/2010 MSc
thesis of L. Sldmova.
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STEP 2: RISING-RATE SCENARIO, Il

e Set-up (§6.3 of Sldmova MSc-thesis). Consider short rates r =
r(o, (0,0,v)) of the form:

Ty = Myt + f\,oﬁ Q.mh&ﬁmv t e —NNOq
where L = L(0,0,v) with

exp (—37°%)

V2rxs

v(dz,ds) = L(1+~%)6 1,0y dz x ds,

and where (generically)

0 2o,t
Y /\H.TMMOH\Q\M

with g = h 00w du = (/a)(1 — exp (—at)).

my = for —
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STEP 2: RISING-RATE SCENARIO, Ill.

In the setting of the previous slide, the no-arbitrage correspondence
with (MR) is explicitly given as follows.

e Theorem 3 (Sldmové MSc-thesis, §§6.3.2, 6.3.3): For any two
pairs (7,a) € Ry and (6,7) € RZ,\ {(0,0)}, the short rate r =
r(o,(0,0,v)) mo:mﬁ\:nﬁmQ in the previous slide has the following
properties (1) to (3):

(1) r satisfies No-arbitrage and FIT.

(2) If fo.00 = limy—yoo fo,¢ €Xists in R, thenr has mean reversion
to the random variable r, given by:

Too = Moo T HQA%OOVQ\OOV ;

where
J 7/a

v V12 )/
and where §.. = 6v/7 /a and oo = V/V7 .

(3) r is increasing on [0,T*) for any T* in [0, oq].

— \Ogoo
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STEP 2: RISING-RATE SCENARIO, V.

The Theorem 3 explicit representation of the no-arbitrage corre-
spondence gives a handle for establishing a sufficiency criterion
for its compliance with an & = 0 rising-rate scenario. This turns
out to be based on solving quadratic equations.

e Recall for this
) >0,

w. /\Hl_lmMoa\Qw
where ¢+ = ﬁ 0o du = (6/a)(1 — exp(—at)).
e The key equivalences: Assuming fo: > 0,

S@H,wo, -

0 < my iff Yo.¢ is in the solution interval
of the quadratic inequality

Qr(x) = @%gw - wﬁ%%a — [ <0;

i 7o, 5,

a
1— exp (—at)
where 3 is the positive root of Q¢(x) = 0.
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STEP 2: RISING-RATE SCENARIO, V.

Summing up, we have the following criterion for compliance of
the short-rate process r = r(o,1G(d,v)) constructed in Theorem 3
with an ¢ = 0 rising-rate scenario.

o Theorem 4 (Sldamovd MSc-thesis, Corollary 6.26): In the situ-
ation of Theorem 3 we have

r. >0 for any t € [to,T] C R>q U {o0}

if for > 0 for all t € [to, T and if the Vasicek vol parameter &
satisfies:

a
— (o ms MJ
o< A Jmamwwi 1—exp (—at) *

@
c (o, n %),
- A 1— exp (—atp) NMMWE t

where Sf = (1/0%)(f8 4+ four/ S+ (5)2 ).
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STEP 2: RISING-RATE SCENARIO, VI.

In the version of her MSc thesis prepared for Charles University,
Prague, Sldmova was able to develop:

e estimation techniques and
e simulation techniques

for rates r from the short rate machine including those of Theorems
3 and 4 above.

Examples of sample paths thus obtained include the following:

e Figure 3: Simulation of this talk’s short rate r, based on drivers
L constructed using IG(0, y)-processes.

Figure 3 by courtesy of Slamova.
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2.2

Simulation of the short rate process
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Figure 3. Simulation of r with (7,a)=(0.1, 0.1) and (6,v)=(1, 10).
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WHAT REMAINS TO BE ADDRESSED
(I) Application and use of this talk's approach and results to
e exotics <m._:m103 and hedging
e on calibration to liquid instruments.
As a small but necessary step in this direction:
e How to value plain vanilla options (e.g., on LIBOR)?

(IT) How to dispose of the ‘quadratic inequality’ type restrictions
in scenario-modelling.
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VALUATION EXAMPLE, L

e Consider the valuation of plain-vanilla call-options on time-T
LIBOR with time-U payoff

(U~T) (LIBORy — K) + .
e Time-t value of this call, using EMM @, is given by
V, = E?[B;/By (U~T) (LIBORy — k)4 | 73] ,

where B, = exp (fjo,u] 7s ds).

o Connect with term-structure of interest-rates (as considered in
this talk) by the ‘equilibrium condition’

1+ (U~T)LIBORy = 1/Pry .
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VALUATION EXAMPLE, Il.

e No-arbitrage dynamics of bond values associated with a pair
(o, L) is explicitly given by

Pry="-""exp(— ,Fﬂ Asryds+ %oﬂ (=%s1,0)dLs)

. U
Mmhﬁ@ — Mu.w“Q'iMummH with vaz — %o vaéuggu

\wmhﬁq — %N:mA|MuquV - \%m:mAI.Mm,\H.v .
e Time-t value in no-arbitrage form is given by

V, = k*Pop E9T [(¢* — exp (— Lr(D))) , | 7],
computed w.r.t. the T-forward measure Qr, where
Lyr(L) = hﬁj Ys,,udls,
and with normalized constants

¥ =1+ U-T)k)erry and c=1/k"
where

Ct.T.U = Quo“q\wogimx@ (— %oﬂ As Ty ds+ ﬁ (=%, r0)dLs).
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VALUATION EXAMPLE, Iil.

e Idea: Express V, as a series in terms of higher derivatives of
MG 1(z) = Ef[exp (zL1)].

e Step 1 Reduction series in terms of the integral order mo-
ments of I; 7 = b& T Y 1,v dLsg, typically:

Vi=r"Por ) an BT [La(lir)],
where .

L, (z) = (n-th Laguerre polynomial) = Mwlo Qp, kT

2
with oy, x = (—=1)*/k!(}), and coefficients
b, n oo —z
= L = e 5l

exponential polynomials in logc* on setting p(z) = (¢*—e™")+.

e Step 2 Dt_u__nmw_os of the key lemma: Obtain the moments
of I, r required in Step 1 in terms of the higher derivatives of
MG 1. by use (with f(s) = 2%, rv) of the key lemma:

Elexp ( [,z f(s)dLs) | F2] = exp ([ 7y 92,s(f(5)) ds) .
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VALUATION EXAMPLE, IV.
o Specialize to the set-up of the rising-rate scenario:
05y = 0exp(—alu—s)), s<u,
| L =1G(4,7),
and for the parameters choose the :cBm:nm_ values

cg=0.07 a=2.5
6=0.1 ~y=11.

(originally used to model a bulls’ market in a stochastic volatility
context ...).

e Consider options with U—~T = T = 6 months and strike x =
0.75% at time t = 0.

e The value V; is then computed as

Vi = 0.99310695456 .
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VALUATION EXAMPLE, V.

o Nota Bene: Reduction series here once more enable accuracies
of some 10 decimal places after the decimal point by merely using
a single digit number of their terms; in the example some 5 terms
are sufficient for this.

Vio = 0.93468704614 59224154382685895890473
Vi1 = 0.93115233897 42785542938267191420976
Vio = 0.99310709401 44407853125204580811052
Viz = 0.99310695649 46047165452592638767005
Via = 0.99310695459 29648636817671083220054
Vis = 0.99310695457 01668943291121395407522
Vie = 0.99310695456 99215313550113723309971
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HOW TO DISPOSE OF (II)-TYPE RESTRICTIONS
Current approach is via choice of EMMs as follows.

e Step 1. Girsanov construction of family of measures (Q),cr
with each Q; equivalent to P on (Q, F). This construction preserves
the principal form of the talk’'s no-arbitrage correspondence with
(MR), as witnessed by the following 3 conditions for each Q.

e () gives rise to a no-arbitrage correspondence for forward-
rate processes as in Theorem 1;i.e.,

e ), becomes EMM on adaption of the drift of (Qs,F)-
dynamics of forward-rate process.

e The resulting (Qs, F)-dynamics of the short-rate process has
(MR), under integrability conditions on (o, L).

e Step 2. The realization of scenarios within each Step 1 no-
arbitrage correspondence now rests solely on the choice of appro-
priate Q;. Given (o, L) and £ > 0 we show in particular

e existence of maximal b} such that: the Theorem 4 type
rising-rate scenarios with (P.) hold on (Q,F,F, Q) for
every b < b%.

o Step 3. Our methods for working with the models (e.g., reduc-
tion series) extend to the Step 1 and 2 framework.
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HOPEFULLY TO BE CONTINUED
by further developing applications of this talk’s approach to
e exotic fixed-income derivatives and their

e valuation and hedging.
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