MECHANISMS FOR NO-ARBITRAGE TERM-STRUCTURE MODELLING, WITH APPLICATIONS TO INTEREST-RATES AND REALIZED VARIANCE

Michael Schröder

A reversal of ECB policy in the next months, what consequence for our positions?

A continued rise in volatility during these next weeks, how to quantify the effects?

Develop a framework to handle these questions as follows

- Step 1. Establish construction methods for no-arbitrage dynamics of term-structures of forward rates (forward interest-rates, forward relized-variances, etc)
- Step 2. Refine the Step 1 mechanisms to assure compliance variance, etc) with empirically observed stylized facts: of instantaneous rates (short rate, instantaneous realized-
- finite time-horizon mean reversion.
- finite time-horizon positivity (respectively boundedness from below).
- non-exploding prices of corresponding primary instruments (bonds, variance swaps, etc).
- cases, moreover **transfer** to derivatives valuation and hedging ... in concrete Step 3. Assure tractability of the constructions, as well as its

Benchmark for tractability: Vasicek model of short-rate

MODELLING FRAMEWORK: HIGHLY-STYLIZED, I.

where $T^* \in [0, \infty]$. Work on a fixed filtered probability space $(\Omega, \mathcal{F}, \mathbf{F} = (\mathcal{F}_u)_{u \in [0, T^*]}, P)$

Given: the family of forward-rate processes

$$(f_{t,T})_{t\in [0,T]}\,,\,\,\, ext{for every }T\in [0,T^*)\,.$$

Consider: the family of term-structure processes, for every $T \in [0, T^*)$ given by

$$(Y_{t,T})_{t\in[0,T]}$$
 , where $Y_{t,T}=g\big(\int_{[t,T]}f_{t,u}\,du\big)$,

for fixed and sufficiently nice $g: (\text{range of the } f_{t,T}) \to \mathbf{R}$

Step 1. Construction of (F,Q)-no-arbitrage dynamics by asking the validity of the expectations hypothesis

$$Y_{t,T} = E^{Q} \left[g(R_T - R_t) \mid \mathscr{F}_t \right], \ t \in [0,T],$$

where

$$R_u = \int_{[0,u]} f_{s,s} ds, \quad u \in [0,T^*).$$

for any $T\in [0,T^*]$, on measure change from P to an equiva-

MODELLING FRAMEWORK: HIGHLY-STYLIZED, II.

Continue in the setting of Step 1.

Focus on the instantaneous rate, namely

$$(f_{u,u})_{u\in[0,T^*)}$$
,

and look at its (\mathbf{F}, P) -dynamics.

- Step 2. Effect compliance with stylized facts of the Step 1 construction by asking validity of:
- Mean reversion (MR). We have

$$\lim_{u\uparrow T^*} f_{u,u} = f_{T^*,T^*} ,$$

in a cup or L^1 sense w.r.t. P.

Positivity (P_{ε}) . For fixed $\varepsilon \geq 0$, we have

$$f_{u,u} \ge \min\{0, f_{0,u} - \varepsilon\},\,$$

for every $u \in [t_0, T_0] \subseteq [0, T^*)$, in a P-a.s. sense.

MODELLING FRAMEWORK: HIGHLY-STYLIZED, III.

Specialization of the modelling framework by choice of g:

$$\left(\begin{array}{c} \text{realized-variance} \\ \text{modelling} \end{array} \right) \quad \longleftrightarrow \quad g = \mathrm{id} \,.$$

$$\left(\begin{array}{c} \mathsf{interest\text{-}rate} \\ \mathsf{modelling} \end{array}\right) \quad \longleftrightarrow \quad g = 1/\exp \ .$$

of the talk on For concreteness' and definiteness' sake: Focus in the rest

$$g = 1/\exp$$
,

the interest-rate case.

MODELLING FRAMEWORK, TRANSLATED

space $(\Omega, \mathcal{F}, \mathbf{F} = (\mathcal{F}_u)_{u \geq 0}, P)$: Construct short rate r as a process on a fixed filtered probability

$$r=(r_u)_{u\geq 0}\,,$$

with the construction to satisfy 4 conditions:

sure) $Q \sim P$ such that for all points in time $t \leq T$: No-arbitrage: There is an EMM (equivalent martingale mea-

$$P_{t,T} = egin{pmatrix} \mathsf{time-}t \; \mathsf{price} \; \mathsf{of} \\ \mathsf{maturity-}T \\ \mathsf{zerobond} \end{pmatrix} = E^Q \left[\exp \left(- \int_t^T r_u \, du
ight) \left| \, \mathcal{F}_t \,
ight];$$

here then $f_{t,u} = -\partial_T \log(P_{t,T})|_{T=u}$ and vice versa.

FIT: The (observed) time-0 prices $(P_{0,T})_{T\geq 0}$ satisfy

$$P_{0,T} = E^{Q}[\exp(-\int_{0}^{T} r_{u} du)], T \ge 0.$$

- **Stylized Fact** (P_{ε}) : Have $r_u \geq \min\{0, f_{0,u} \varepsilon\}$, for all $u \in$ $[t_0,T_0]\subseteq [0,T^*)\subseteq \mathbf{R}_{\geq 0}$
- **Stylized Fact (MR)**: Have existence (in ucp or L^1) and (P_{ε}) of $r_{T^*} = \lim_{u \to T^*} r_u$

BENCHMARK MODEL, I: NO-ARBITRAGE

The Vasicek model postulates short rate dynamics of the form

$$r_t = m_t + \int_0^t \sigma_{s,t} dW_s , \quad t \in \mathbf{R}_{\geq 0}$$

 $a, \overline{\sigma} \in \mathbb{R}_{>0}$ given by: driven by (\mathbf{F},P) -Brownian motion W, with vol structure for fixed

$$\sigma_{s,t} = \overline{\sigma} \exp(-a(t-s)), \quad s \le t.$$

Conditions No-arbitrage and FIT hold with the choice:

$$m_t = f_{0,t} + \int_0^t \partial_T \Theta_W(-\Sigma_{s,T})|_{T=t} ds$$

= $f_{0,t} + \frac{1}{2} (\overline{\sigma}/a)^2 (1 - e^{-at})^2$,

for all $t \in \mathbf{R}_{\geq 0}$, where $f_{0,t} := -\partial_t P_{0,t}$.

BENCHMARK MODEL, III: STYLIZED FACTS.

Continue with No-arbitrage and FIT to hold.

• Properties I: Have

$$r_u \sim N(\mu_u, \text{var}_u),$$

where $\mu_u = m_u$ and $\text{var}_u = \overline{\sigma}^2/(2a)(1 - e^{-2au})$.

Properties II: Assuming existence of $f_{0,\infty} = \lim_{t\to\infty} f_{0,t}$, we have existence of $r_{\infty} = \lim_{u \to \infty} r_u$ with

$$r_{\infty} \sim N(\mu_{\infty}, \text{var}_{\infty})$$
,

where $\mu_{\infty} = \lim_{u \to \infty} \mu_u = f_{0,\infty} + (1/2)(\overline{\sigma}/a)^2$ and $\operatorname{var}_{\infty} = \lim_{u \to \infty} \operatorname{var}_u = \overline{\sigma}^2/(2a)$.

- **Problem 1**: Positivity of r_u and r_∞ systematically violated!
- Problem 2: Exploding bond prices, otherwise!

BENCHMARK MODEL, III: (P_{ε}) failure.

Figure 1. $P(r_{\infty}<0)$ in dependency on Vasicek parameters a and $b=\overline{\sigma}/a$.

DRAWING ON WORK OF EBERLEINS

use of work of Eberlein et al's as follows To overcome negativity problems of Vasicek short rates we make

- Basic idea: Keep the overall form of the Vasicek model dynamgeneral semimartingale L. ics for r but exchange as its driver Brownian motion W by a
- More precisely, consider dynamics

$$r_u = a_u + \int_0^t \alpha_{s,t} \, ds + \int_0^t \sigma_{s,t} \, dL_s \,, \ t \in \mathbb{R}_{\geq 0} \,,$$

with L a (\mathbf{F},P) -semimartingale and (here as well as in the of the talk!) $a: \mathbf{R}_{\geq 0} \to \mathbf{R}$ and $\alpha, \sigma: \mathbf{R}_{\geq 0}^2 \to \mathbf{R}$ sufficiently nice (processes or even just) functions.

- structural reasons: L is too general a semimart! Problem: Already No-arbitrage is unachievable in general by
- **structing** appropriate semimartingale drivers L. **Remedy**: Have to restrict the generality of L and resort to **con-**

DRIVING PROCESSES, I.

- nishes appropriate semimartingale drivers L. Basic insight: Already the class of PII-semimartingales fur-
- triples (b, c, ν) , to be called PII-triples, where The construction of PII-semimartingales L is in terms of
- $b\in L^1_{\mathrm{loc}}(\mathbf{R}_{\geq 0})$,
- $c \in L^1_{\mathrm{loc}}(\mathbf{R}_{\geq 0})$ and $c \geq 0$,
- $\nu=\{\nu_s(dx)\times ds\}_{s>0}$ is a (predictable) random measure on ${\bf R}\times {\bf R}_{>0}$ with all $(|x|^2\wedge 1)\nu_s(x)$ integrable on ${\bf R}$,

and is (morally) effected by associating with (b,c,
u) the process given by:

$$L_t = \int_0^t b_s^* ds + L_t^{c} + L_t^{pd}, \ t \in \mathbf{R}_{\geq 0},$$

where $b_s^* = b_s + (x - \mathbf{1}_{\{|x| \le 1\}}) * \nu_s$ and where

$$\begin{split} L_t^{\rm c} &= \int_0^t \sqrt{c_s} \, dW_s \,, \\ L_t^{\rm pd} &= \int_0^t \int_{\mathbf{R}} x (\mu - \nu) (dx, ds) \,, \end{split}$$

for any $t \in \mathbf{R}_{\geq 0}$, are the continuous martingale (Gaussian) part of (here μ is the jump measure). L and the $\emph{purely-discontinuous martingale part}$ of L respectively

DRIVING PROCESSES, II.

- The driving processes L to be chosen encompass Brownian motion with drift
- Starting from an arbitrary **PII-triple** (b, c, ν) , where:
- $b = (b_s)_{s \ge 0} \in L^1_{\mathrm{loc}}(\mathbf{R}_{\ge 0}),$
- $c=(c_s)_{s\geq 0}\in L^1_{\mathrm{loc}}(\mathbf{R}_{\geq 0})$ and $c\geq 0$,
- $u=\{\nu_s(dx)\times ds\}_{s>0}$ is a (predictable) random measure on ${\bf R}\times {\bf R}_{>0}$ with all $(|x|^2\wedge 1)\nu_s(x)$ integrable on ${\bf R}$,
- they are characterized by the Fourier transforms of their laws:

$$E[\exp(zL_u)] = \exp(\Theta_{L,u}(z)),$$

where

$$\Theta_{L,u}(z) = \int_{[0,u]} \vartheta_{L,s}(z) \, ds \,,$$

with

$$\vartheta_{L,s}(z) = zb_s + \tfrac{1}{2}z^2c_s + \int_{\mathbf{R}} \left(e^{zx} - 1 - z\mathbf{1}_{\{|x| \le 1\}}\right) \nu(dx, ds) \,,$$

for complex z in some open neighborhood of $\sqrt{-1} \, \mathbf{R}$.

PEDAGOGICAL DEVICE re (EMM)

We consider —initially— the situation:

$$Q=P$$
,

where the (given) statistical measure P is taken to also furnish an **EMM**.

Will later indicate how to get beyond this convenient but particular arrangement!

STEP 1: THE SHORT-RATE MECHANISM, I.

- Idea: Assure dynamics with No-arbitrage by adaption of drift.
- Theorem 1 (Short rate mechanism): There is a construction to associate with (sufficiently nice) pairs $(\sigma, (b, c, \nu))$ of
- $\sigma: \mathbf{R}^2_{\geq 0} \to \mathbf{R}_{\geq 0}$ volatility structure, (b, c, ν) PII-triple

a dynamics of the short rate r satisfying No-arbitrage and FIT. by way of the definition Explicitly the construction proceeds by adaption of the drift

$$r_t = m_t + \int_0^t \sigma_{s,t} dL_s \,, \ t \in \mathbf{R}_{\geq 0} \,,$$

where $L = L(b, c, \nu)$ and

$$m_t = f_{0,t} + \int_0^t \partial_T \Theta_{L,s}(-\Sigma_{s,T})|_{T=t} ds$$

setting $\Sigma_{s,T} = \int_s^T \sigma_{s,u} \, du$ and with

$$\begin{split} \Theta_{L,s}(z) &= z \int_0^s b_u \, du + \frac{z^2}{2} \int_0^s c_u \, du \\ &+ \int_0^s \int_{\mathbf{R}} \left(e^{zx} - 1 - z \mathbf{1}_{\{|x| \le 1\}} \right) \nu(dx, ds) \,, \end{split}$$

for complex z in a suitable open neighborhood of $\sqrt{-1} \, \mathbf{R}$.

STEP 1: THE SHORT-RATE MECHANISM, III.

the expectations hypothesis, namely The key step for establishing the S-R M is to assure validity of

$$P_{t,T} = E^{Q} \left[\exp \left(- \int_{t}^{T} r_{u} du \right) \middle| \mathcal{F}_{t} \right], \ t \in [0, T],$$

for any $T < T^*$.

The key tool for this is furnished by the following result.

Lemma: For PII-semimarts L we have

$$E\left[\exp\left(\int_t^T f(s) dL_s\right) \middle| \mathcal{F}_t\right] = \exp\left(\int_t^T \vartheta_{L,s}(f(s)) ds\right),$$

for any $t \in [0,T]$ and any càg map $f:[t,T] \to \mathrm{Dom}(\Theta_{L,T})$.

Credits: The S-R M provides a perspective on the vintage 2005 of E. Eberlein; this perspective was developed in the 2009 MScthesis of L. Slamova U Freiburg PhD thesis of W. Kluge, written under the direction

STEP 2: ADD MEAN-REVERSION, II.

- Address **finite-horizon mean-reversion** of $(r_u)_{u\geq 0}$ by asking, for fixed $T^* \in (0,\infty]$ and $\varepsilon \geq 0$, the following condition:
- $\begin{array}{ll} \text{(MR)} & E[|r_T^*-r_t|\,]<\varepsilon, \text{ for every } t\in[T^*-\delta,T^*\,],\\ & \text{for some } \delta=\delta(r,T^*,\varepsilon)>0. \end{array}$
- **Task:** Incorporate (MR) in the Step 1 no-arbitrage correspondence $(\sigma,L)\mapsto r(\sigma,L)$ of Theorem 1.
- and $L^2(0,\infty)$ with 'good' respective Cauchy-condition-type conadditional conditions centered on σ being contained in $L^1(0,\infty)$ the chosen EMM Q, then $r(\sigma,L)$ also satisfies (MR) under 4 **Theorem 2:** If L has first (and second) order moments w.r.t. vergence properties

STEP 2: ADD MEAN-REVERSION, III.

in the Step 1 no-arbitrage correspondence. Range of applicability of the Theorem 2 incorporation of (MR)

Processes:

- **Does not apply** to α -stable processes L, but
- function $z\mapsto E[\exp{(zL_1)}]$ is finite on an open neighborhood of $\sqrt{-1} \mathbf{R}$, as, e.g., for $L \in \{GIG, NIG\}$. - does apply to every process L whose moment generating

Vol-structures:

- **Does not apply** to $\sigma = const > 0$, but
- does apply to the vol-structures given by

1)
$$\sigma_{s,u} = \overline{\sigma} \exp\left(-a(u-s)\right),\,$$

$$\sigma_{s,u} = \overline{\sigma} \exp(-a(u-s)) \frac{1+\gamma u}{1+\gamma s},$$

2

for any $s \leq u$, for arbitrary fixed real $\overline{\sigma}$, a > 0 and γ .

STEP 2: ADD POSITIVITY, I.

Starting from arbitrary but sufficiently regular pairs

$$(\sigma,L)$$
 where σ vol-structure on $[0,T^*]^2$ L PII-semimartingale

we have constructed

- a no-arbitrage correspondence of $(f_{s,u})_{s\in[0,u]}$, the forwardrate processes,
- which induces a no-arbitrage short-rate process $r=r(\sigma,L)$
- that satisfies finite-horizon mean-reversion (MR), under integrability conditions on σ , L.

We wish to incorporate in these correspondences in addition

compliance with rising-rate scenarios, respectively falling-rate scenarios

STEP 2: ADD POSITIVITY, II.

Stressing scenarios is a new feature.

By a rising-rate scenario we mean:

- the specification of a fixed period of time $[t_0, T_0] \subseteq [0, T^*)$.
- the specification of a short-rate process $r=(r_u)_{u\in[0,T^*)}$ with $r|_{[t_0,T_0]}$ increasing w.r.t. the statistical measure P, i.e., $r_u\leq r_{u^*}$ on $(\Omega, \mathcal{F}, \mathbf{F}, P)$ for every $u \leq u^*$ in $[t_0, T_0]$.
- validity, for some $\varepsilon \geq 0$, of the P-almost-surely condition

$$(\mathbf{P}_{\varepsilon}) \quad \begin{matrix} r_u = f_{u,u} \geq \min\{0, f_{0,u} - \varepsilon\} \,, \\ \text{for every } u \in [t_0, T_0]. \end{matrix}$$

scenarios Falling-rate scenarios conceive as mirror images of rising-rate

STEP 2: RISING-RATE SCENARIO, I.

- Will demonstrate incorporation of rising-rate scenarios
- ullet in the situation when $L=\mathrm{IG}(\delta,\gamma)$ -process
- in an as explicit and as strict as possible form of the no-arbitrage correspondence
- ... a plan which boils down to work done in the $2009/2010 \; \text{MSc}$ thesis of L. Slámová.

STEP 2: RISING-RATE SCENARIO, II.

Set-up ($\S 6.3$ of Slámová MSc-thesis). Consider short rates r= $r(\sigma,(0,0,\nu))$ of the form:

$$r_t = m_t + \int_0^t \sigma_{s,t} dL_s , \quad t \in \mathbf{R}_{\geq 0} ,$$

where L=L(0,0,
u) with

$$\nu(dx, ds) = \frac{1}{2}(1 + \gamma^2 x)\delta \frac{\exp(-\frac{1}{2}\gamma^2 x)}{\sqrt{2\pi x^3}} \mathbf{1}_{\{x>0\}} dx \times ds,$$

and where (generically)

$$m_t = f_{0,t} - \frac{\delta}{\gamma} \frac{\Sigma_{0,t}}{\sqrt{1 + 2\Sigma_{0,t}/\gamma^2}}$$

with $\Sigma_{0,t} = \int_0^t \sigma_{0,u} du = (\overline{\sigma}/a)(1 - \exp(-at)).$

STEP 2: RISING-RATE SCENARIO, III.

with (MR) is explicitly given as follows In the setting of the previous slide, the no-arbitrage correspondence

- Theorem 3 (Slámová MSc-thesis, §§6.3.2, 6.3.3): For any two pairs $(\overline{\sigma},a)\in\mathbf{R}^2_{>0}$ and $(\delta,\gamma)\in\mathbf{R}^2_{\geq0}\setminus\{(0,0)\}$, the short rate $r=r(\sigma,(0,0,\nu))$ constructed in the previous slide has the following properties (1) to (3):
- (1) r satisfies No-arbitrage and FIT.
- (2) If $f_{0,\infty} = \lim_{t\to\infty} f_{0,t}$ exists in **R**, then r has mean reversion to the random variable r_{∞} given by:

$$r_{\infty} = m_{\infty} + \mathrm{IG}(\delta_{\infty}, \gamma_{\infty}),$$

where

$$m_{\infty} = f_{0,\infty} - \frac{\delta}{\gamma} \frac{\overline{\sigma}/a}{\sqrt{1-2(\overline{\sigma}/a)/\gamma^2}},$$

and where $\delta_{\infty} = \delta \sqrt{\overline{\sigma}}/a$ and $\gamma_{\infty} = \gamma/\sqrt{\overline{\sigma}}$.

(3) r is increasing on $[0,T^*)$ for any T^* in $[0,\infty]$.

STEP 2: RISING-RATE SCENARIO, IV.

spondence gives a handle for establishing a sufficiency criterion out to be based on solving quadratic equations for its compliance with an $\varepsilon=0$ rising-rate scenario. This turns The Theorem 3 explicit representation of the no-arbitrage corre-

Recall for this

$$m_t = f_{0,t} - rac{\delta}{\gamma} \frac{\Sigma_{0,t}}{\sqrt{1+2\Sigma_{0,t}/\gamma^2}}$$

where $\Sigma_{0,t} = \int_0^t \sigma_{0,u} du = (\overline{\sigma}/a)(1 - \exp(-at)).$

The key equivalences: Assuming $f_{0,t} > 0$,

 $0 \leq m_t$ iff $\Sigma_{0,t}$ is in the solution interval of the quadratic inequality

$$Q_t(x):=\left(\frac{\delta}{\gamma}\right)^2x^2-2\Big(\frac{f_{0,t}}{\gamma}\Big)^2x-f_{0,t}^2\leq 0\,;$$

$$\text{iff} \qquad \overline{\sigma} \in \left[0, \frac{a}{1-\exp\left(-at\right)} \, \Sigma_t^+\right],$$

where Σ_t^+ is the positive root of $Q_t(x) = 0$.

STEP 2: RISING-RATE SCENARIO, V.

Summing up, we have the following criterion for compliance of with an $\varepsilon = 0$ rising-rate scenario the short-rate process $r=r(\sigma,\operatorname{IG}(\delta,\gamma))$ constructed in Theorem 3

ation of Theorem 3 we have Theorem 4 (Slámová MSc-thesis, Corollary 6.26): In the situ-

$$r_t > 0$$
 for any $t \in [t_0, T] \subseteq \mathbf{R}_{\geq 0} \cup \{\infty\}$

if $f_{0,t}>0$ for all $t\in[t_0,T]$ and if the Vasicek vol parameter $\overline{\sigma}$ satisties:

$$\overline{\sigma} \in \left(0, \min_{t \in [t_0, T]} \frac{a}{1 - \exp\left(-at\right)} \Sigma_t^+\right)$$

$$\subseteq \left(0, \frac{a}{1 - \exp\left(-at_0\right)} \min_{t \in [t_0, T]} \Sigma_t^+\right),$$

where
$$\Sigma_t^+ = (1/\delta^2)(f_{0,t}^2 + f_{0,t}\sqrt{f_{0,t}^2 + (\delta\gamma)^2})$$
.

STEP 2: RISING-RATE SCENARIO, VI.

Prague, Slámová was able to develop: In the version of her MSc thesis prepared for Charles University,

- estimation techniques and
- simulation techniques

for rates r from the short rate machine including those of Theorems 3 and 4 above.

Examples of sample paths thus obtained include the following:

Figure 3: Simulation of this talk's short rate r, based on drivers L constructed using $\mathrm{IG}(\delta,\gamma)$ -processes

Figure 3 by courtesy of Slámová.

WHAT REMAINS TO BE ADDRESSED

- ${
 m (I)}$ Application and use of this talk's approach and results to
- exotics valuation and hedging
- on calibration to liquid instruments.

As a small but necessary step in this direction:

- How to value plain vanilla options (e.g., on LIBOR)?
- How to dispose of the 'quadratic inequality' type restrictions in scenario-modelling.

VALUATION EXAMPLE, I.

Consider the valuation of plain-vanilla call-options on time-TLIBOR with time-U payoff

$$(U-T)$$
 (LIBOR_T $-\kappa$)₊.

Time-t value of this call, using EMM Q, is given by

$$V_t = E^Q \left[B_t / B_U \left(U - T \right) \left(\text{LIBOR}_T - \kappa \right)_+ | \mathscr{F}_t \right],$$

where $B_u = \exp\left(\int_{[0,u]} r_s \, ds\right)$.

Connect with term-structure of interest-rates (as considered in this talk) by the 'equilibrium condition

$$1 + (U - T) \operatorname{LIBOR}_T = 1/P_{T,U}.$$

VALUATION EXAMPLE, III.

No-arbitrage dynamics of bond values associated with a pair (σ, L) is explicitly given by

$$P_{T,U} = \frac{P_{0,U}}{P_{0,T}} \exp\left(-\int_0^T A_{s,T,U} ds + \int_0^T (-\Sigma_{s,T,U}) dL_s\right)$$

where

$$\begin{split} \Sigma_{s,T,U} &= \Sigma_{s,U} - \Sigma_{s,T} \quad \text{with} \quad \Sigma_{s,u} = \int_0^u \sigma_{s,w}, dw \,, \\ A_{s,T,U} &= \vartheta_{L,s} (-\Sigma_{s,U}) - \vartheta_{L,s} (-\Sigma_{s,T}) \,. \end{split}$$

Time-t value in no-arbitrage form is given by

$$V_t = \kappa^* P_{t,T} E^{Q_T} \left[\left(c^* - \exp\left(-I_{t,T}(L) \right) \right)_+ | \mathscr{F}_t \right],$$

computed w.r.t. the T-forward measure Q_T , where

$$I_{t,T}(L) = \int_{[t,T]} \Sigma_{s,T,U} dL_s,$$

and with normalized constants

$$\kappa^* = (1 + (U-T)\kappa)c_{t,T,U}$$
 and $c = 1/\kappa^*$

where

$$c_{t,T,U} = (P_{0,U}/P_{0,T}) \exp\left(-\int_0^T A_{s,T,U} ds + \int_0^t (-\Sigma_{s,T,U}) dL_s\right).$$

VALUATION EXAMPLE, III.

- **Idea:** Express V_t as a series in terms of higher derivatives of $MG_L(z) = E^P[\exp(zL_1)].$
- Step 1 Reduction series in terms of the integral order moments of $I_{t,T}=\int_{[t,T]} \Sigma_{s,T,U} dL_s$, typically:

$$V_t = \kappa^* P_{t,T} \sum_{n=0}^{\infty} a_n E^{Q_T} [L_n(I_{t,T})],$$

where

$$L_n(x) = (n\text{-th Laguerre polynomial}) = \sum_{k=0}^n \alpha_{n,k} x^k$$

with $\alpha_{n,k}=(-1)^k/k!\binom{n}{k}$, and coefficients

$$a_n = \frac{\langle \phi, L_n \rangle}{\langle L_n, L_n \rangle} = \sum_{k=0}^n \alpha_{n,k} \int_0^\infty e^{-x} x^k \varphi(x) dx$$

exponential polynomials in $\log c^*$ on setting $\varphi(x) = (c^* - e^{-x})_+$.

Step 2 Application of the key lemma: Obtain the moments of $I_{t,T}$ required in Step 1 in terms of the higher derivatives of MG_L by use (with $f(s)=z\Sigma_{s,T,U}$) of the **key lemma**:

$$E\left[\exp\left(\int_{[t,T]} f(s) dL_s\right) \mid \mathscr{F}_t\right] = \exp\left(\int_{[t,T]} \vartheta_{L,s}(f(s)) ds\right).$$

VALUATION EXAMPLE, IV.

Specialize to the set-up of the rising-rate scenario:

$$\begin{split} \sigma_{s,u} &= \overline{\sigma} \exp\left(-a(u{-}s)\right), \ s \leq u\,, \\ L &= \mathrm{IG}(\delta,\gamma)\,, \end{split}$$

and for the parameters choose the numerical values

$$\overline{\sigma} = 0.07 \quad a = 2.5$$

 $\delta = 0.1 \quad \gamma = 11.$

context ...). (originally used to model a bulls' market in a stochastic volatility

- Consider options with U-T=T=6 months and strike $\kappa=$ 0.75% at time t = 0.
- $V_t = 0.99310695456$.

The value V_t is then computed as

VALUATION EXAMPLE, V.

of some 10 decimal places after the decimal point by merely using are sufficient for this. a single digit number of their terms; in the example some 5 terms Nota Bene: Reduction series here once more enable accuracies

$$\begin{split} V_{t,0} &= 0.93468704614\,59224154382685895890473 \\ V_{t,1} &= 0.93115233897\,42785542938267191420976 \\ V_{t,2} &= 0.99310709401\,44407853125204580811052 \\ V_{t,3} &= 0.99310695649\,46047165452592638767005 \\ V_{t,4} &= 0.99310695459\,29648636817671083220054 \\ V_{t,5} &= 0.99310695457\,01668943291121395407522 \\ V_{t,6} &= 0.99310695456\,99215313550113723309971 \end{split}$$

HOW TO DISPOSE OF (II)-TYPE RESTRICTIONS

Current approach is via choice of EMMs as follows

- with each Q_b equivalent to P on (Ω, \mathbf{F}) . This construction preserves the principal form of the talk's no-arbitrage correspondence with • Step 1. Girsanov construction of family of measures $(Q_b)_{b\in\mathbb{R}}$ (MR), as witnessed by the following 3 conditions for each Q_b
- rate processes as in Theorem 1;i.e., ullet Q_b gives rise to a no-arbitrage correspondence for forward-
- dynamics of forward-rate process ullet Q_b becomes EMM on adaption of the drift of $(Q_b, {\sf F})$ -
- (MR), under integrability conditions on (σ, L) . ullet The resulting $(Q_b, {\sf F})$ -dynamics of the short-rate process has
- arbitrage correspondence now rests solely on the choice of appropriate Q_b . Given (σ, L) and $\varepsilon \geq 0$ we show in particular Step 2. The realization of scenarios within each Step 1 no-
- rising-rate scenarios with (P_{ε}) hold on $(\Omega, \mathcal{F}, \mathbf{F}, Q_b)$ for every $b \leq b_{\varepsilon}^*$. ullet existence of **maximal** b_{ε}^* such that: the Theorem 4 type
- tion series) extend to the Step 1 and 2 framework. Step 3. Our methods for working with the models (e.g., reduc-

HOPEFULLY TO BE CONTINUED

by further developing applications of this talk's approach to

- exotic fixed-income derivatives and their
- valuation and hedging.