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preface

Netspar stimulates debate and fundamental research in the field 

of pensions, aging and retirement. The aging of the population 

is front-page news, as many baby boomers are now moving 

into retirement. More generally, people live longer and in better 

health while at the same time families choose to have fewer 

children. Although the aging of the population often gets negative 

attention, with bleak pictures painted of the doubling of the ratio 

of the number of people aged 65 and older to the number of the 

working population during the next decades, it must, at the same 

time, be a boon to society that so many people are living longer 

and healthier lives. Can the falling number of working young 

afford to pay the pensions for a growing number of pensioners? 

Do people have to work a longer working week and postpone 

retirement? Or should the pensions be cut or the premiums paid 

by the working population be raised to afford social security for 

a growing group of pensioners? Should people be encouraged 

to take more responsibility for their own pension? What is the 

changing role of employers associations and trade unions in 

the organization of pensions? Can and are people prepared to 

undertake investment for their own pension, or are they happy 

to leave this to the pension funds? Who takes responsibility for 

the pension funds? How can a transparent and level playing field 

for pension funds and insurance companies be ensured? How 

should an acceptable trade-off be struck between social goals 

such as solidarity between young and old, or rich and poor, and 
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individual freedom? But most important of all: how can the 

benefits of living longer and healthier be harnessed for a happier 

and more prosperous society? 

	 The Netspar Panel Papers aim to meet the demand for 

understanding the ever-expanding academic literature on the 

consequences of aging populations. They also aim to help give 

a better scientific underpinning of policy advice. They attempt 

to provide a survey of the latest and most relevant research, 

try to explain this in a non-technical manner and outline the 

implications for policy questions faced by Netspar’s partners. Let 

there be no mistake. In many ways, formulating such a position 

paper is a tougher task than writing an academic paper or an 

op-ed piece. The authors have benefitted from the comments of 

the Editorial Board on various drafts and also from the discussions 

during the presentation of their paper at a Netspar Panel Meeting. 

	 I hope the result helps reaching Netspar’s aim to stimulate 

social innovation in addressing the challenges and opportunities 

raised by aging in an efficient and equitable manner and in an 

international setting.

Henk Don

Chairman of the Netspar Editorial Board
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Abstract
This Netspar Panel Paper discusses the pricing of contracts in an
incomplete market seƫng. For life insurance companies and
pension funds, it is always the case in pracƟce that not all of the
risks in their books can be hedged. Hence, the standard
Black-Scholes methodology cannot be applied in this situaƟon. The
paper discusses and compares several methods that have been
proposed in the literature in recent years: the Cost-of-Capital
method (the current industry standard), Good Deal Bound pricing,
and pricing under Model Ambiguity. Although each of these
methods has a very different economic starƟng point, we show
that all three converge for small Ɵme-steps to the same limit. This
convergence provides a basis for comparing the different
parameters used by the three methods. From this comparison we
conclude that the current cost-of-capital of ϊ% used by the
industry and CEIOPS is too low, since it is not in line with the values
implied by the Good Deal Bound and Model Ambiguity methods. A
cost-of-capital of υφ% is needed to bring the method in line with
the other two methods.
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υ. Management Summary & Policy RecommendaƟons

Life insurance companies and pension funds have liabiliƟes on
their books with very long-dated maturiƟes. The valuaƟon and
risk-management of these very long-dated contracts is therefore
an important problem in pracƟce.

The standard theory (based on replicaƟng the cash flows) fails
because there are simply no financial contracts that last this long.
In well-developed economies (such as the euro-zone countries and
the US) government bonds have maturiƟes up to χτ years.

On the other hand, regulators in many countries (especially in
Europe under the Solvency II project) are insisƟng that insurance
companies (and in The Netherlands, also pension funds) value
their liabiliƟes on a ”market-consistent” basis. Hence, to value
these long-dated cash flows in a market-consistent way, one is
forced to extend the term-structure of interest rates, which can be
observed from financial markets, beyond the maturity of the
longest dated instrument that can be observed in the market. In
the current economic circumstances, with low long-term interest
rates, pension funds are reporƟng low funding levels as a
consequence of these valuaƟon rules. A related issue is how to
select financial instruments that give the best possible investment
strategy (or hedge) for these very long-dated cash flows. In many
cases this involves striking a balance between seeking assets with a
higher return, at the expense of accepƟng a higher mismatch risk
between the liabiliƟes and the assets.

From a scienƟfic point of view, the problem of pricing these very
long-dated contracts boils down to the valuaƟon of contracts in an
incomplete markets seƫng. This means trying to price contracts
where not all of the risks can be traded (and hedged) in financial
markets. In the past ten years significant progress has been made
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regarding this subject. This Panel Paper discusses and compares
several methods that have been proposed in the literature: the
Cost-of-Capital method (the current industry standard), Good Deal
Bound pricing, and pricing under Model Ambiguity. We show that
each of these three methods converges for small Ɵme-steps to the
same limit. This convergence provides a basis for comparing the
different parameters used by the three methods.

The results presented in this paper allow us to provide the
following policy recommendaƟons:

• The “Cost-of-Capital” method proposed by the insurance
industry and CEIOPS (i.e. the market-consistent price of an
insurance contract, which is determined by the market
value of the replicaƟng porƞolio, plus a mark-up for the
unhedgeable risks: the risk margin; see EIOPA (φτυτ) for
further details) has qualitaƟvely the right properƟes, but
lacks a solid theoreƟcal foundaƟon. A pricing method with a
rigourous theoreƟcal foundaƟon can be obtained by using
the pricing methods put forward in this paper.

• In parƟcular, the formulas for calculaƟng market-consistent
prices formulƟ-year products—as put forward by EIOPA in
QISω—lack a theoreƟcal basis, and should be seen as a
coarse approximaƟon at best. The main problem is that the
proposed QISω-methodology is not Ɵme-consistent. We
recommend that CEIOPS adopts a Ɵme-consistent pricing
method based on backward-inducƟon calculaƟon
techniques.

• The Ɵme-consistent pricing method proposed in this paper
calculates prices under an “actuarially prudent” model,
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where (for each Ɵme-step) the best-esƟmate mean is
adjusted by k Ɵmes the standard deviaƟon of the
unhedgeable risk of the whole porƞolio. The Good Deal
Bound approach implies k > 0.25, the Model Ambiguity
approach implies k ≈ 0.30, and the Cost-of-Capital
approach implies k = 0.15. The values k for the first two
approaches are in line with each other, but the value
implied by the Cost-of-Capital method seems too low. A
value of k = 0.30 is needed to bring the Cost-of-Capital
method in line with the other two methods, which
corresponds to a cost-of-capital of υφ% (instead of the ϊ%
currently proposed by the industry and CEIOPS).

• Regulators are parƟcularly vulnerable to model risk. When
the regulator puts forward a very explicitly specified
standard model (as is currently happening under
Solvency II), then compeƟƟve market forces will ensure that
most of the risk accumulates at the “weakest point” of the
regulator’s model. To guard against this model risk, we
propose that the regulator adopts a robust approach to
model risk. This can be achieved by puƫng forward several
alternaƟve models, and the industry should then calculate
Solvency Capital on the basis of the worst outcome under
the different models.
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φ. IntroducƟon

Life insurance companies and pension funds have liabiliƟes on
their books with very long-dated maturiƟes. Most people start
saving for their pension from age φω, and people are expected to
live to age όω, with the oldest people living to age υυω. Hence,
pension funds and life insurance companies are facing contractual
obligaƟons that can easily last ϊτ years—and someƟmes even ότ or
ύτ years—into the future. The valuaƟon and risk-management of
these very long-dated contracts is therefore an important problem.
To give a feel for the size of the problem: for life-insurance and
pension products, a porƟon of roughly φτ% of the net present
value of the cash flows is located in the tail of χτ+ years.

The standard theory (based on replicaƟng the cash flows) fails
because there are simply no financial contracts which last this
long. In well-developed economies (such as countries in the
euro-zone and the US), the longest government bonds have
maturiƟes up to χτ years. In developing countries (such as Eastern
Europe, and LaƟn America and Asia), government bonds are issued
with much shorter maturiƟes (typically only up to ten years, and
someƟmes even much shorter).

On the other hand, regulators in many countries (especially in
Europe under the Solvency II project) are insisƟng that insurance
companies (and in The Netherlands, also pension funds) value
their liabiliƟes on a “market-consistent” basis. Hence, to value
these long-dated cash flows in a market-consistent way, one is
forced to extend the term-structure of interest rates, which can be
observed from financial markets, beyond the maturity of longest
dated instrument that can be observed in the market. In the
current economic circumstances, with low long-term interest rates,
pension funds are reporƟng low funding levels as a consequence of
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these valuaƟon rules. A related issue is how to select financial
instruments that give the best possible investment strategy (or
hedge) for these very long-dated cash flows. In many cases this
involves striking a balance between seeking assets with a higher
return, at the expense of accepƟng a higher mismatch risk
between the liabiliƟes and the assets.

Pricing calculaƟons serve mulƟple purposes. One of these is
price-seƫng, which involves the calculaƟon of the amount of
money for which a contract can be sold to a customer. A second
purpose has to do with pricing calculaƟons used as a basis for
corporate policy. This involves determining what the profit margin
is for each contract sold. AlternaƟvely, by determining for which
price the profit is equal to zero, an insƟtuƟon can find the
minimum price at which a product sƟll can be sold profitably.
These types of calculaƟons are typically made when new products
are being introduced by the insƟtuƟon. Third, pricing calculaƟons
are done for reporƟng and capital adequacy purposes. In this case,
one uses the pricing calculaƟons to (re)calculate the value of all
assets and liabiliƟes in the balance sheet based on current
economic circumstances. As a result, one can then determine the
surplus (or the coverage raƟo) of assets versus liabiliƟes. In
pracƟce, different calculaƟon methods are oŌen applied for the
different pricing purposes. Ideally, one should use the same
calculaƟon methodology for all applicaƟons in order to ensure
internal consistency.

From a scienƟfic point of view, the problem of pricing very
long-dated contracts boils down to the valuaƟon of contracts in an
incomplete markets seƫng. This means that we are trying to price
contracts where not all of the risks can be traded (and hedged) in
financial markets. In the past ten years significant progress has
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been made regarding this subject. Several approaches have been
invesƟgated with the common goal of trying to idenƟfy a pricing
measure (or pricing kernel) that prices traded risks consistently
with prices observed in the market and that also includes an
extension for non-traded risks. The big problem is how to
construct such an extension in a sensible way.

This panel paper first discusses the Cost-of-Capital (CoC) method
proposed by the insurance industry. This method has become the
de facto industry standard, which has also been adopted by the
European Union for the QuanƟtaƟve Impact Studies (QIS) in the
Solvency II process. The idea behind the CoC method is that the
insurance company has to hold a buffer for the non-hedgeable
risks on top of the replicaƟng porƞolio. Hence, pricing consists of a
“best-esƟmate” term plus a mark-up for the non-hedgeable risks.
We discuss how to construct a Ɵme-consistent extension of the
CoC methodology, and we derive an equaƟon for how to calculate
CoC prices.

A second approach discussed in this paper, is the Good Deal
Bound (GDB) method. The GDB approach looks at the risk/return
trade-off of non-hedgeable risks. This risk/return trade-off for the
non-hedgeable risks is then compared to the risk/return trade-off
that we can observe for traded assets (where it is called themarket
price of risk). The GDB method then calculates prices for
non-hedgeable assets by making sure that the risk/return trade-off
for any asset does not exceed a given upper bound. This upper
bound is put on the prices, under the assumpƟon that economic
agents will exploit trading opportuniƟes that are “too good”
(i.e. have a risk/return trade-off that is too high).

The third approach discussed in this paper is based on model
ambiguity and robustness. Although this methodology has been
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widely used in engineering for decades, it has aƩracted aƩenƟon
in economics only in recent years. (See, for example, the book
Robustness by Hansen and Sargent (φττϋ).) The fundamental
premise in the robustness approach is that we are uncertain about
the correct specificaƟon of our model. Therefore, when we try to
make decisions (like pricing and hedging a liability) we explicitly
want to take the model-uncertainty into account. This can be
implemented mathemaƟcally as follows. First, specify a set of
alternaƟve models to the current base model. Then assume that
we are playing against a “malevolent mother nature” that tries to
pick the worst possible model out of the set of alternaƟve models
(given the decisions we have commiƩed to). Since we are,
however, aware of this, we try therefore to make decisions that are
as resilient as possible given the worst-case acƟons of mother
nature.

This Panel Paper shows that each of these three approaches
converges for small Ɵme-steps in the limit to the same pricing
equaƟon. This is illustrated with several examples. Unfortunately,
most of the academic literature discussed in this paper is wriƩen in
rather abstract mathemaƟcal language, making the results very
difficult to access for non-technical readers. One of the
contribuƟons that this Panel Paper hopes to make is to present the
results in a more intuiƟve way.

The remainder of this paper is organised as follows. SecƟon χ
briefly recalls the results of how to calculate prices in a complete
market seƫng. SecƟon ψ then analyses the other extreme, an
incomplete market seƫng when we only have risks that are not
traded in a market. In this seƫng we derive our main results about
the mathemaƟcal equivalence of the three pricing methods under
consideraƟon. SecƟon ω considers the case in which we have both
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types of risks (traded and non-traded), and we show how the
results from the previous secƟon generalise in this case. Finally,
SecƟon ϊ shows some applicaƟons of the pricing methods we have
developed.
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χ. Pricing in Complete Markets

This secƟon provides an overview of the theory of pricing payoffs
in complete markets. In a complete market, every risk driver can be
traded in a market—and every risk can thus be hedged. In the case
of complete markets, every payoff can be priced explicitly using
arbitrage-free pricing.

χ.υ Binomial Tree
To illustrate the main ideas, we use a simple mathemaƟcal seƫng.
We have a risk driver Wx(t), which is a Brownian MoƟon. We also
assume an asset price process x(t), which is given by the diffusion
equaƟon

dx = m(t, x) dt + σ(t, x) dWx , (χ.υ)

where m(t, x) and σ(t, x) denote the driŌ and diffusion of the
return process x(t). We assume that x(t) can be traded in a
market.

For example, if we model a stock price S(t) as x(t), and we set
m(t, x) = µx and σ(t, x) = σx , then we recover the famous
Black and Scholes (υύϋχ) model.

We also assume a riskless asset B, which earns the risk-free
interest rate r . The value of the riskless asset is given by

dB = rB dt. (χ.φ)

We wish to consider a discreƟsaƟon scheme for the return
process x(t) for the Ɵme period [t, t + ∆t] in the form of a
binomial tree:

x(t +∆t) = x(t)+m∆t +
{

+σ
√
∆t with prob. 1

2
−σ

√
∆t with prob. 1

2 , (χ.χ)

where we have suppressed the dependence of m(t, x) and
σ(t, x) on (t, x) for ease of notaƟon.
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χ.φ Pricing by ReplicaƟon
Suppose we have a derivaƟve f (t, x) that has a payoff that
depends on x . Suppose that we know the price of the derivaƟve at
Ɵme t + ∆t for any value of x(t + ∆t); i.e. we know the
funcƟon f

(
t + ∆t, x(t + ∆t)

)
. The quesƟon is: how do we

determine the value for f one Ɵme-step earlier at Ɵme t?
The answer to this quesƟon was developed by Fisher Black,

Myron Scholes and Robert Merton in the early υύϋτs. They used
the noƟon of pricing by replicaƟon, which won Scholes and Merton
the Nobel Prize in economics in υύύϋ. The idea works as follows.
Suppose we buy a porƞolio of D units of the risky asset x and an
amount B invested in the risk-free asset. Then at Ɵme t this
porƞolio has value (Dx(t) + B). At Ɵme t +∆t the porƞolio has
two possible values (using the binomial discreƟsaƟon (χ.χ)){

Dx+ + er∆tB with prob. 1
2

Dx− + er∆tB with prob. 1
2 , (χ.ψ)

where x± is shorthand notaƟon for x± := x(t) + m∆t ±σ
√
∆t .

Given the binomial discreƟsaƟon for x(t + ∆t), the derivaƟve
f () has two possible values at Ɵme t + ∆t : either
f+ := f (t + ∆t, x+) or f− := f (t + ∆t, x−). If we want to
match the values of our porƞolio (Dx(t) + B) with the value of
our derivaƟve f at Ɵme t + ∆t , we have to solve the following
system of equaƟons:{

Dx+ + er∆tB = f+
Dx− + er∆tB = f−. (χ.ω)

The soluƟon is given by D = f+−f−
x+−x− and B = e−r∆t f−x+−f+x−

x+−x− .
We have now explicitly constructed the replicaƟng porƞolio for

the derivaƟve f (). The brilliant insight of Black, Scholes and
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Merton was that the price of the derivaƟve f (t, x) at Ɵme t must
be equal to the price (Dx(t) + B) of the replicaƟng porƞolio. If
this would not be the case, there would be an arbitrage
opportunity: two different prices for two instruments that have
exactly the same value at Ɵme t + ∆t . Therefore, we calculate
the value at Ɵme t of the derivaƟve f (t, x) by evaluaƟng
(Dx(t) + B):¹

f (t, x) = 1
2

(
1 − r∆t −

(
m(t,x)−rx
σ(t,x)

)√
∆t

)
f+ +

1
2

(
1 − r∆t +

(
m(t,x)−rx
σ(t,x)

)√
∆t

)
f−. (χ.ϊ)

The term m(t,x)−rx
σ(t,x) measures the excess return above the risk-free

rate of the risky asset divided by the standard deviaƟon of the risky
asset. This raƟo is known as themarket price of risk, which will be
denoted by

λ(t, x) := m(t, x) − rx
σ(t, x) . (χ.ϋ)

The market price of risk is a posiƟve quanƟty, as the return
m(t, x) on a risky asset is larger than the return rx on a risk-free
asset. The market price of risk will turn out to be quite crucial in
the rest of our story.

χ.χ Deflator Pricing
The binomial pricing equaƟon (χ.ϊ) admits several different
interpretaƟons. The first interpretaƟon worth noƟng is the

¹Please note that the equality is not exact, as we have omiƩed terms of higher
order than∆t . On the other hand, the binomial approximaƟon (χ.χ) of the pro-
cess x is also not exact. However, when we consider the limit for∆t → 0 then
all of the approximaƟons converge to the correct answer.
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interpretaƟon as a pricing operator with respect to a deflator or
pricing kernel.

Interpret (χ.ϊ) as taking an expectaƟon, using the original
binomial probabiliƟes 1

2 and 1
2 , of the adjusted derivaƟve values(

1 − r∆t − λ(t, x)
√
∆t

)
f+ and(

1 − r∆t + λ(t, x)
√
∆t

)
f−. The adjustment factor is different

for the “plus” and the “minus” state of the world; hence, the
adjustment factor is a random variable. In fact, we can interpret
the adjustment factor as the binomial discreƟsaƟon of the random
variable ξ(t), which is given by

dξ = −rξ dt − λ(t, x)ξ dWx . (χ.ό)

The random variable ξ(t) is known as the deflator or the pricing
kernel. Note that the volaƟlity of the pricing kernel is equal to
minus the market price of risk−λ(t, x). The minus sign indicates
than whenever Wx(t) decreases, then ξ(t) increases. This has
the effect of puƫng more weight on “bad” outcomes of the
process x (i.e. low values of Wx ) than on “good” outcomes (high
values of Wx ).

Using the deflator interpretaƟon, re-write the pricing equaƟon
(χ.ϊ) as

f (t, x) = Et [ξ(t + ∆t)f (t + ∆t)]
ξ(t) , (χ.ύ)

where Et [ ] denotes the expectaƟon operator condiƟonal on the
informaƟon available at Ɵme t , in parƟcular the informaƟon that
the process x(t) at Ɵme t is equal to the value x .

χ.ψ Risk-Neutral Pricing
An alternaƟve interpretaƟon of the pricing equaƟon (χ.ϊ) is as a
discounted risk-neutral expectaƟon. Instead of using the original
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binomial probabiliƟes and adjusƟng the payoff (as was done in
SecƟon χ.χ), we can adjust binomial probabiliƟes and leave the
payoff unchanged. When doing this, we must ensure that the new
probabiliƟes are created sƟll sum to υ. The adjusted binomial
probabiliƟes are given by 1

2
(
1 − r∆t − λ(t, x)

√
∆t

)
and

1
2
(
1 − r∆t + λ(t, x)

√
∆t

)
. However, when these two numbers

are added together we get (1 − r∆t), which is less than υ. An
elegant way to adjust the weight-factors is by re-wriƟng² them as
e−r∆t 1

2
(
1− λ(t, x)

√
∆t

)
and e−r∆t 1

2
(
1 + λ(t, x)

√
∆t

)
. Now

re-write the pricing equaƟon (χ.ϊ) as

f (t, x) = EQ
t
[
e−r∆t f (t + ∆t)

]
, (χ.υτ)

where EQ
t [ ] denotes the condiƟonal expectaƟon operator with

respect to the adjusted binomial probabiliƟes

q = 1
2
(
1 − λ(t, x)

√
∆t

)
(χ.υυa)

1 − q = 1
2
(
1 + λ(t, x)

√
∆t

)
(χ.υυb)

for the “plus” and “minus” state, respecƟvely.
Like in SecƟon χ.χ, the adjusted probabiliƟes q and (1 − q) put

more weight on the “minus” state compared to the original
binomial probabiliƟes of 1

2 . In fact, the expectaƟon of x(t + ∆t)
is calculated using the adjusted binomial probabiliƟes, we find that
EQ

t [x(t + ∆t)] = x(t)er∆t . Hence, under the adjusted
probabiliƟes, the process x(t) grows with the risk-free rate r ,
which is lower than the true growth rate m(t, x) of the process
x(t).

Wrapping up this secƟon, we would like to stress that the pricing
formulæ (χ.ύ) and (χ.υτ) will give exactly the same outcome. They

²Again, we are ignoring terms of higher order than∆t .
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are nothing more than different representaƟons of the same
binomial pricing equaƟon (χ.ϊ).

χ.ω ParƟal DifferenƟal EquaƟon
Up unƟl now, we have focused extensively on the pricing of a
derivaƟve contract for one single Ɵme-step [t, t + ∆t]. Obviously,
we are ulƟmately interested in pricing contracts of the whole life
[0, T ]. One method for converƟng a “one-step” pricing formula
into a “whole interval” pricing formula is to apply the one-step
pricing formula using a backward-inducƟon procedure. In other
words, start at the end-date T and then move backward in Ɵme by
repeatedly applying the one-step pricing formula for each
Ɵme-step∆t . The backward-in-Ɵme nature of this algorithm
ensures that at each Ɵme t during the calculaƟon the valuaƟon
formula accounts for all of the remaining uncertainty unƟl the
maturity date T . Hence, use of backward-inducƟon makes it
possible to construct a pricing operator that is Ɵme-consistent.

This subsecƟon considers the limit for∆t → 0. Assume that
f (t + ∆t, x) is sufficiently smooth in t and x , such that we can
apply for all values of (t, x) the Taylor approximaƟon

f
(
t + ∆t, x + h

)
= f

(
t + ∆t, x

)
+

fx
(
t + ∆t, x

)
h + 1

2 fxx
(
t + ∆t, x

)
h2 + O(h3), (χ.υφ)

where subscripts on f denote parƟal derivaƟves. If we apply the
binomial approximaƟon (χ.χ) for the process x(t), this yields
f+ = f

(
t + ∆t, x + m∆t + σ

√
∆t

)
and

f− = f
(
t + ∆t, x + m∆t − σ

√
∆t

)
.

If we subsƟtute the Taylor approximaƟon (χ.υφ) into these
expressions and then subsƟtute into the one-step binomial pricing
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equaƟon (χ.ϊ), this yields

0 = f
(
t + ∆t, x

)
− f

(
t, x

)
+ rxfx

(
t + ∆t, x

)
∆t +

1
2σ

2fxx
(
t + ∆t, x

)
∆t − rf

(
t + ∆t, x

)
∆t + O(∆t2).

(χ.υχ)

Note that due to the adjustment factors in the binomial pricing
equaƟon (χ.ϊ), the true growth rate m(t, x) has disappeared
from (χ.υχ), and has been replaced by the risk-free growth rate rx
that mulƟplies the term fx

(
t + ∆t, x

)
∆t .

Now, divide by∆t and take the limit for∆t → 0, which yields

ft + rxfx + 1
2σ

2fxx − rf = 0, (χ.υψ)

where we have suppressed the dependence on (t, x) to lighten
the notaƟon. EquaƟon (χ.υψ) is a parƟal differenƟal equaƟon (pde)
for the derivaƟve price f (t, x). The price of any derivaƟve on the
underlying process x(t) is a soluƟon to (χ.υψ) with respect to a
boundary condiƟon f

(
T , x(T )

)
that defines the payoff as a

funcƟon of x(T ) at the maturity date T .

χ.ϊ Literature Overview
The literature on pricing in complete markets has been developed
and extended since the υύϋτs. It started with the seminal papers
by Black and Scholes (υύϋχ) and Merton (υύϋχ). The binomial tree
pricing model was developed by Cox et al. (υύϋύ). The connecƟon
to marƟngale measures was developed by Harrison and Kreps
(υύϋύ) and Harrison and Pliska (υύόυ). Significant generalisaƟons
were achieved for more general stochasƟc processes by Delbaen
and Schachermayer (υύύψ). For an introducƟon to pricing
derivaƟves, see the textbook by Hull (φττύ).
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ψ. Pricing non-hedgeable Risk

SecƟon χ considered the case of a complete market—one in which
the underlying risk driver can be traded. This secƟon considers the
opposite case, where the underlying risk drivers cannot be traded.
This makes it no longer possible to construct a replicaƟng porƞolio,
which was the underlying basis for the pricing method in SecƟon χ.
Instead, we have to define a pricing operator to determine the
value of a payoff.

This has been the subject of study of actuaries for a long Ɵme.
The basic idea for a pricing operator is to use the expected value of
the payoff minus a “penalty term” that depends on the risk of the
payoff. Many different pricing operators have been proposed (for
an overview, see Gerber (υύϋύ), Deprez and Gerber (υύόω), Young
(φττψa) and the textbook by Kaas et al. (φττό)). Actuaries make a
disƟncƟon between two main classes of pricing operators. One
class uses standard deviaƟon as a measure of risk, the other class
uses variance as the measure of risk. This Panel Paper focusses on
pricing operators of the first class. SecƟon ψ.ϊ provides a literature
overview of alternaƟve pricing methods that belong to the second
class.

ψ.υ Binomial Tree
Let us introduce a new risk driver Wy , which is a Brownian MoƟon.
We also assume a process y(t), which is given by

dy = a(t, y) dt + b(t, y) dWy . (ψ.υ)

Note that we assume that y(t) cannot be traded in a market. Like
in SecƟon χ, here we also consider the binomial discreƟsaƟon for
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the process y for a Ɵme-step∆t as

y(t +∆t) = y(t) + a∆t +
{

+b
√
∆t with prob. 1

2
−b

√
∆t with prob. 1

2 . (ψ.φ)

Furthermore, we want to consider a derivaƟve g(t, y) which has a
payoff that depends on y .
ψ.φ Cost-of-Capital Pricing
A pricing principle that is widely used in pracƟce is the
Cost-of-Capital (CoC) Principle. This was introduced by the Swiss
insurance supervisor as a part of the method to calculate solvency
capitals for insurance companies (see, e.g. Keller and Luder, φττψ).
In recent years, the CoC method has been widely adopted by the
insurance industry in Europe, and has also been prescribed as the
standard method by the European Insurance and Pensions
Supervisor for the QuanƟtaƟve Impact Studies (see EIOPA, φτυτ).

The CoC approach is based on the following economic reasoning.
First consider the “expected loss” E[g(T , y)] of the insurance
claim g(T , y) as a basis for pricing. But this is not enough; the
insurance company also has to hold a capital buffer against the
“unexpected loss”. This buffer is calculated as a Value-at-Risk over
a Ɵme horizon (typically one year) and a probability threshold q
(usually τ.ύύω, or even higher). The unexpected loss is then
calculated as VaRq[g(T , y)]. The capital buffer is borrowed from
the shareholders of the insurance company (i.e. the buffer is
subtracted from the surplus in the balance sheet). Given the very
high confidence level, in many cases the buffer can be returned to
the shareholders—although there is a chance that the capital
buffer is needed to cover an unexpected loss. Hence, the
shareholders require compensaƟon for this risk in the form of a
cost-of-capital premium. This cost-of-capital premium needs to be
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included in the pricing of the insurance contract. If we denote the
cost-of-capital by δ, then the CoC pricing equaƟon is given by

g(t, y) = e−r(T−t) (Et [g(T , y)] + δVaRq,t [g(T , y)]) . (ψ.χ)

ψ.φ.υ Time-Consistency
The pricing method defined in equaƟon (ψ.χ) has a methodological
problem: it is defined for a one-year horizon (i.e. t = T − 1). An
important pracƟcal quesƟon is, how to extend the pricing formula
to longer horizons? The approach adopted by the industry is a
simple rule-of-thumb; see Keller and Luder (φττψ). The idea is as
follows: you first make a projecƟon of the contract value along the
“best-esƟmate path” of the risk driver given by
Et
[
g(T , y(T )) | y(t) = E0[y(t)]

]
for all 0 ≤ t ≤ T . Then, at

annual points (t = 1, 2, 3, ...) you approximate the Value-at-Risk
(VaR) by considering the impact of a ύύ.ω% shock for the risk driver
from the best-esƟmate path. Finally, the present value of all shocks
is added and mulƟplied by δ.

Let us consider an example. For ease of exposiƟon assume
r = 0. Suppose there is a two-year product with a payoff ebWy (2).
The best-esƟmate path is given by Et [ebWy (2)|Wy(t) = 0] =
e 1

2 b2(2−t) for t = 0, 1, 2. A one-year ύύ.ω% worst-case shock on
Wy(t) is given by an increase in value to Wy(t) + 2.58. Hence,
the Value-at-Risk in year t is approximated by applying the
one-year shock to the best-esƟmate path as e 1

2 b2(2−t)(e2.58b − 1).
Finally, the CoC price for this two-year product would be calculated
as

e 1
2 b22 + δ(e 1

2 b2 + 1)(e2.58b − 1). (ψ.ψ)

If b = 50% and δ = 6% then we calculate a price of 1.62.
A disadvantage of the “best-esƟmate path method” is that the

dynamics of the risk driver y(t) are completely ignored for the VaR
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calculaƟon. If we move one year ahead in Ɵme, then the risk driver
will be at the value y(1), which will differ from the best esƟmate
value E0[y(1)]. Hence, the CoC price of the product at Ɵme t = 1
is based on a different best-esƟmate path than the calculaƟon at
t = 0. Therefore, the “best-esƟmate path method” used by the
industry is not Ɵme-consistent.

How can we obtain a Ɵme-consistent version of the CoC pricing
operator? One approach (similar to that taken for complete
markets in SecƟon χ) to use a backward-inducƟon method. In fact,
Jobert and Rogers (φττό) prove that every Ɵme-consistent
valuaƟon operator can be obtained by backward-inducƟon of a
one-step pricing operator. Returning to the example, given the
payoff at T = 2, we can calculate the price at Ɵme υ condiƟonal
on the value of Wy(1) as

ebWy (1)+ 1
2 b2 + δ(eb(Wy (1)+2.58)+ 1

2 b2 − ebWy (1)+ 1
2 b2).

This expression can be simplified to

ebWy (1)+ 1
2 b2 (1 + δ(e2.58b − 1)

)
.

Given the price at Ɵme υ, which is now an explicit funcƟon of
Wy(1), we can again calculate the CoC price at t = 0. This leads
to the formula

e 1
2 b22 (1 + δ(e2.58b − 1)

)2 . (ψ.ω)

If we take again b = 50% and δ = 6%, we find a price of 1.72.
When we compare the price (ψ.ψ) of the “best-esƟmate path”

method with the backward-inducƟon price (ψ.ω), then we
immediately see the effect of the best-esƟmate path
approximaƟon. In (ψ.ψ) one adds the terms δ(e2.58b − 1) and
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δe 1
2 b2(e2.58b − 1) to the price e 1

2 b22. Whereas the
backward-inducƟon method explicitly takes the “capital-on-capital”
effect into account by mulƟplying the price e 1

2 b22 twice with the
factor (1 + δ(e2.58b − 1)), the inclusion of the “capital-on-capital”
effect leads to a Ɵme-consistent pricing operator.

ψ.φ.φ ParƟal DifferenƟal EquaƟon
As a final step in our argument, we change the length of the
Ɵme-step in the Cost-of-Capital pricing operator from one year to
∆t , and consider the limit for∆t → 0. Note that when
comparing Value-at-Risk quanƟƟes at different Ɵme-scales∆t ,
these have to be scaled back to a per annum basis; this is done by
dividing the VaR term by³

√
∆t . Then, consider that the

cost-of-capital δ behaves like an interest rate: it is the
compensaƟon the insurance company needs to pay to its
shareholders for borrowing the buffer capital over a certain period.
The cost-of-capital is expressed as a percentage per annum; hence,
over a Ɵme-step∆t the insurance company has to pay a
compensaƟon of δ∆t pere of buffer capital. This yields a “net
scaling” of δ∆t/

√
∆t = δ

√
∆t .

For a single Ɵme-step∆t , this yields the following expression
for the CoC price:

g
(
t, y(t)

)
= e−r∆t

(
Et [g

(
t + ∆t, y(t + ∆t)

)
]+

δ
√
∆tVaRq,t [g

(
t + ∆t, y(t + ∆t)

)
]
)

. (ψ.ϊ)

³The scaling by
√
∆t is a result of using Brownian MoƟon to describe the

evoluƟon of risk. More general stochasƟc process (such as Lévy processes) may
require different scaling factors, but this is beyond the scope of the current paper.
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With this pricing operator for a∆t-step we apply the
backward-inducƟon method to determine the Ɵme-consistent CoC
price for a payoff g(T , y) at Ɵme T , and take the limit∆t → 0.

Note that for small∆t , the variance at Ɵme t of the process
g(t + ∆t, y) is given by b2g2

y∆t . Furthermore, in a diffusion
seƫng, for small∆t , all risks are very close to a normal
distribuƟon. Hence, the VaR at Ɵme t is closely approximated by k
Ɵmes the standard deviaƟon kb|gy |

√
∆t , where the constant k is

given by the inverse cumulaƟve normal distribuƟon of the VaR
confidence level q (i.e. k = Φ−1(q)). Given that g(t + ∆t, y) is
sufficiently smooth to be twice conƟnuously differenƟable in y , we
can then (similar to the manipulaƟons in SecƟon χ.ω) subsƟtute
the Taylor approximaƟon of the funcƟon g(t + ∆t, y) for the
binomial approximaƟon (ψ.φ) into (ψ.ϊ), divide by∆t and take the
limit for∆t → 0, which yields⁴ the following parƟal differenƟal
equaƟon (pde) for the price operator g(t, y):

gt + agy + 1
2b2gyy + δkb|gy | − rg = 0. (ψ.ϋ)

A comparison of the pricing equaƟon (ψ.ϋ) and the complete
market pricing equaƟon (χ.υψ) reveals two important differences.
First, note the addiƟonal term δkb|gy |. This is the “penalty term”
that the Cost-of-Capital method adds for wriƟng the
non-hedgeable claim g(T , y). Second, it seems that we have not
changed the driŌ term a for the process y in the pricing equaƟon.
But this is not enƟrely true. In fact, whenever the payoff g(T , y)
is monotonous in y(T ), then the sign of gy is unique, and the two
terms depending on gy can be added together to obtain(
a ± δkb

)
gy . Therefore, the CoC price g(t, y) can be

⁴For a more elaborate derivaƟon, see Bayraktar and Young (φττό) or Delong
(φτυυ).
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represented with respect to the “risk-adjusted” process y :

dy =
(
a(t, y) ± δkb(t, y)

)
dt + b(t, y) dWy , (ψ.ό)

where the sign of±δk is determined by the sign of gy . This allows
for a very nice interpretaƟon of the pricing equaƟon (ψ.ϋ). When
pricing an non-hedgeable claim g(T , y), we adjust the
“best-esƟmate” driŌ of the process y in a “conservaƟve” direcƟon.
In other words, the driŌ is adjusted upwards or downwards by
δkb(t, y) depending on the sign of gy . Making the price more
conservaƟve by adjusƟng the driŌ is a Ɵme-honoured actuarial
pracƟce known as prudence.

RevisiƟng the example from SecƟon ψ.φ.υ, recall there was a
payoff of ey(2) with r = 0, a = 0 and b = 0.50. This payoff is
monotonically increasing in y and this claim can be priced by
adjusƟng the driŌ of y upward to δkb. Hence, we calculate a price
at Ɵme 0 of e(δkb+ 1

2 b2)2. If we take δ = 6%, k = 2.58 and
b = 0.50, then the price at Ɵme 0 is 1.50.

This secƟon concludes by noƟng that that Cost-of-Capital
method suffers from a weakness: there is relaƟvely liƩle economic
jusƟficaƟon for choosing the correct values of δ and k . The report
CRO-Forum (φττϊ) considers a wide variety of arguments that lead
to a wide range of possible parameter values. In the end, the
CRO-Forum recommends seƫng δ = 0.06 and
k = Φ−1(0.995) = 2.58, leading to a total factor of δk = 0.15.
ψ.χ Good Deal Bound Pricing
A very different approach on pricing in incomplete markets was
introduced by Cochrane and Saá-Requejo (φτττ). It is based on the
following idea. Suppose you are offered the opportunity to enter
the following loƩery: with a probability of 1

2 you get a payoff of
1000, or 1. The iniƟal price of the loƩery is 2. In terms of the
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theory developed in SecƟon χ, this is not an arbitrage opportunity.
However, it does represent a “very good deal”. We get something
with an expected value of 500.50 for a price of 2. There is,
however, risk involved: the expected value is
1
21000 + 1

21 = 500.50, and the standard deviaƟon is√
1
2 ∗ (1000 − 500.50)2 + 1

2 ∗ (1 − 500.50)2 = 499.50. But
you have to be extremely risk-averse to bring the price you are
willing to pay from 500 down to below 2, in order to not
parƟcipate in this loƩery.

The tools developed in SecƟon χ can be used to calculate the
price for this loƩery by adjusƟng the probabiliƟes of the outcomes.
In this example we have to solve⁵ for the adjusted probability q the
equaƟon 2 = q ∗ 1000 + (1 − q) ∗ 1, which leads to q = 1/999
and (1 − q) = 998/999. Comparing the raƟo between the
adjusted probabiliƟes q and the original probabiliƟes 1

2 , like in
equaƟon (χ.υυ), we see that the raƟo is extremely large—almost a
factor 2000 in this example. Hence, “extremely good deals” imply
very large probability raƟos. Another way of looking at this is to
look at the factor λ() that was introduced in (χ.ό), which is the
volaƟlity of the deflator ξ(). SecƟon χ.ψ established that the
deflator volaƟlity λ() can also be interpreted as the market price
of risk, if it was in a complete market. Hence, for “extremely good
deals” the market price of risk λ(t, y) is very large.

This brings us to the idea of Good Deal Bounds. In an incomplete
market seƫng, we cannot trade in the underlying risk driver y .
Hence, we cannot calibrate the marƟngale measure to the prices
of traded assets. On the other hand, it is unrealisƟc to assume that
agents in the economy will leave “extremely good deals”

⁵For ease of exposiƟon we ignore the effect of discounƟng in this example.
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unexploited. Cochrane and Saá-Requejo (φτττ) introduced the
idea of puƫng an upper bound on the deflator volaƟlity λ() to
disƟnguish “normal deals” from “extremely good deals”.
Furthermore, Cochrane and Saá-Requejo (φτττ) proposed using
market prices of risk that we can observe for traded risks as a
benchmark for non-traded risks.

Suppose that we put an upper bound κ on the deflator volaƟlity.
This makes it possible to search for the upper and lower bounds on
the price for a derivaƟve g(T , y) by considering all pricing
deflators with a volaƟlity less than or equal to κ. These upper and
lower bounds for the price represent the “ask” and “bid” prices for
an agent with good deal bound κ.

This may all sound quite complicated, but it allows us to exploit
the structure between deflators, risk-neutral probabiliƟes, and the
driŌ of the risk driver already explored in SecƟon χ. Let us return
to the binomial discreƟsaƟon (ψ.φ) of the process y . By puƫng a
bound κ on the deflator volaƟlity, we infer from equaƟon (χ.υυ)
that we are considering adjusted probabiliƟes in the range

q ∈
[

1
2
(
1 − κ

√
∆t

)
, 1

2
(
1 + κ

√
∆t

)]
. (ψ.ύ)

But, changing the binomial probabiliƟes is equivalent to changing
the driŌ of the process y . Hence, alternaƟvely, we can also say
that we consider specificaƟons for the stochasƟc process y where
the adjusted driŌ a∗(t, y) is somewhere in the range

a∗(t, y) ∈ [a(t, y) − κb(t, y), a(t, y) + κb(t, y)] . (ψ.υτ)

Using the derivaƟon from SecƟon χ.ω, we infer that any price of a
derivaƟve g(t, y) that falls within the Good Deal Bounds is
described by the parƟal differenƟal equaƟon (pde)

gt + a∗gy + 1
2b2gyy − rg = 0, (ψ.υυ)
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where a∗ is taken from the interval (ψ.υτ).
When seeking the highest and lowest prices that are “on the

edge” of the good deal bound interval, we have to find the driŌ a∗

that minimises or maximises the price g(t, y) for each Ɵme-step.
For example, when we want to maximise the price g(t, y), then
we should either put a∗ at the upper bound a(t, y) + κb(t, y)
whenever gy(t, y) > 0 or put a∗ at the lower bound
a(t, y) − κb(t, y) whenever gy(t, y) < 0. Therefore, we can
represent the good deal bound price g(t, y) with respect to the
“risk-adjusted” process y :

dy =
(
a(t, y) ± κb(t, y)

)
dt + b(t, y) dWy , (ψ.υφ)

where the sign of±κ is determined the sign of gy .
Note that the structure of the risk-adjusted process (ψ.υφ) is

exactly the same as the structure of the Cost-of-Capital pricing
process (ψ.ό), provided we take κ = δk .

On the other hand, given that we have the interpretaƟon of κ as
an upper bound for the deflator volaƟlity, which in traded markets
is equal to the market price of risk, this informaƟon can be used to
get more guidance on seƫng κ. Considering equity markets , then
we can calculate the market price of risk. For typical equity markets
(see e.g. Dimson et al. (φττφ)) we see an excess return above the
risk-free rate of around 4%, and a volaƟlity of around 16%,
leading to a market price of risk of approximately 4/16 = 0.25.
From this calculaƟon we infer that the upper bound κ should be
larger than 0.25. Note that in this light the value δk = 0.15
implied by the Cost-of-Capital method seems to be on the low side.

ψ.ψ Model Ambiguity & Robustness
This subsecƟon introduces a third perspecƟve for pricing contracts
in incomplete markets. This is the noƟon ofModel Ambiguity. This
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means that we explicitly take into consideraƟon that the
mathemaƟcal models we use to describe the world are not exact,
but may be misspecified.

Model ambiguity can be illustrated as follows. Suppose we try to
esƟmate the expected return of invesƟng in an equity index (say,
the Standard & Poor’s (S&P) index). Historical observaƟons can
then be used to esƟmate the expected return, but the esƟmate of
the expected return will then be subject to esƟmaƟon error. It
turns out that since equity returns are relaƟvely volaƟle, it is very
difficult to obtain an accurate esƟmate for the expected return.
Assume that the volaƟlity of the S&P index is around υϊ%, and that
we use φω years of data. Then the standard error for the esƟmate
of the expected return is 16%/

√
25 = 3.2%. Suppose that the

esƟmate of the expected return is 8%; then the ύω% confidence
interval for this esƟmate is
[8% − 1.96 ∗ 3.2%, 8% + 1.96 ∗ 3.2%] = [1.7%, 14%]. Even if
we would use υττ years of historical data, our ύω% confidence
interval is sƟll [4.9%, 11%]. Using more years of historical data
will give us a more accurate answer only, if the data-generaƟng
process has remained the same during the enƟre period. It is
highly quesƟonable whether the economy of υττ years ago is
representaƟve of today’s economy. Thus, it is clearly very difficult
to obtain an accurate esƟmate of something as simple as the
expected return of an equity index. The same observaƟon is also
true for the expected increase in human longevity: actuaries have
been constantly revising their projecƟons about forecasts of
human longevity in the last φτ years.

Suppose we accept the impossibility of accurately “knowing”
the correct model specificaƟon. How can we deal with thismodel
ambiguity? One approach is to assume that economic agents are
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concerned about making bad decisions based on misspecified
models. To deal with this problem, assume that agents resort to
robust opƟmisaƟonmethods. This means that agents try to make
their decisions in such a way that they explicitly incorporate the
fact that the “true” model of Mother Nature may deviate from the
mathemaƟcal model used by the agent for decision making. The
noƟon of model ambiguity and robust opƟmisaƟon in economics
has been made popular in recent years by Hansen and Sargent
(see, for example, their book Robustness, Hansen and Sargent
(φττϋ)).

How can the noƟon of robust opƟmisaƟon be implemented in
our seƫng? We start by making some strong simplifying
assumpƟons. First, assume that the true model for the process
y(t) is of the form (ψ.υ). The only uncertainty that we have
concerns the correct specificaƟon of the driŌ term a(t, y). Hence,
we assume that we know the correct specificaƟon of the diffusion
term b(t, y). These are, of course, very strong assumpƟons
indeed, but given the difficulƟes in esƟmaƟng even a “simple”
parameter as the expected return, this seems like a good starƟng
point.⁶

Second, assume that the agent is able to specify a confidence
interval of “reasonable” values for the driŌ a∗(t, y). We will
return later to the quesƟon of how to specify a confidence interval
of reasonable values. In the one-dimensional case being
considered in this secƟon, a confidence interval for the driŌ has
the form a∗(t, y) ∈ [aL, aH ]. Another way of represenƟng a
confidence interval is to say we have a point esƟmate a(t, y) that
is located in the centre of the confidence interval, and a width of

⁶For amore elaborate jusƟficaƟon of considering only uncertainty in the driŌ,
see Hansen and Sargent (φττϋ, Chapter υ).
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the confidence interval given by 2ν Ɵmes the standard deviaƟon
b(t, y) of the process y(t). This leads to the representaƟon

a∗(t, y) ∈ [a(t, y) − νb(t, y), a(t, y) + νb(t, y)]. (ψ.υχ)

Note that this confidence interval is of exactly the same form as
the good deal bound equaƟon (ψ.υτ). However, the parameter ν
now has the interpretaƟon as being the width of the confidence
interval for a∗(t, y).

In this setup we can achieve a robust noƟon of pricing a
derivaƟve g(T , y) by calculaƟng the expectaƟon of g(T , y)
under the “worst” model specificaƟon for the non-hedgeable
process y . In parƟcular, for an insurance company that has wriƩen
the claim g(T , y) payable at Ɵme T , the “worst” model
specificaƟon is that choice for the driŌ a∗(t, y) in the
interval (ψ.υχ) that maximises the value of the expectaƟon. Using
exactly the same argumentaƟon as in SecƟon ψ.χ, we find that the
robust price g(t, y) can be represented by taking the expectaƟon
with respect to the “worst case” process y :

dy =
(
a(t, y) ± νb(t, y)

)
dt + b(t, y) dWy , (ψ.υψ)

where the sign of±ν is determined the sign of gy .
Given our interpretaƟon of ν as the width of the confidence

interval, how can we determine ν? In other words: how can we
establish an interval of “reasonable” values for a∗(t, y)? We can
offer two (closely related) arguments. The first argument is that
historical data can be used to esƟmate the parameter a. The
confidence interval from the parameter esƟmate the becomes the
measure for the interval of “reasonable” values for a∗. Using a ύω%
confidence interval based on φω years of historical data yields
ν = 1.96/

√
25 = 0.39. For ωτ years of historical data we obtain
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ν = 1.96/
√

50 = 0.28. The second argument is to consider the
quesƟon: which alternaƟve model specificaƟons are staƟsƟcally
indisƟnguishable from our current model, given the available data?
The answer (in the case of uncertainty in the mean) is given by all
values for the driŌ a that are in the ύω% confidence interval (ψ.υχ).

Comparing the values for ν of τ.χύ or τ.φό to the lower bound
of τ.φω found for κ reveals these values are nicely in agreement
with each other. Furthermore, we arrive (once again) at the
conclusion that the value δk = 0.15 used by the insurance
industry is on the low side.

ψ.ω A New Value of the Cost-of-Capital
To summarise our discussion on the Cost-of-Capital: the
conclusions drawn both in SecƟon ψ.χ and in the previous secƟon
indicate that the CoC parameter δk = 0.15 currently used by the
insurance industry seems too low.

A value of δk = 0.30 seems much more appropriate when this
is compared to the values implied by the Good Deal Bound and the
Model Ambiguity methods. Seƫng δk = 0.30 and using
k = Φ−1(0.995) = 2.58 implies a cost-of-capital parameter
δ = 12%, which is basically doubling the current value of 6%
proposed by the insurance industry.

Seƫng ν = 0.30 in the Model Ambiguity method, this
corresponds to using (1.96/0.30)2 = 43 years of historical data
to esƟmate the mean of the process y(t). This also seems a
reasonable tradeoff between using as much historical data as
possible, without going back so far in Ɵme that it becomes hard to
believe that the data is sƟll representaƟve for today’s economy.
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ψ.ϊ AlternaƟve Approaches
This secƟon presents various alternaƟve approaches to the theory
developed in this paper so far.

ψ.ϊ.υ Variance Pricing & UƟlity Indifference Pricing
A large body of literature focuses on uƟlity indifference pricing.
The roots can be traced back to Hodges and Neuberger (υύόύ). The
idea is that the assumpƟon is made that the behaviour of agents
can be described by a uƟlity funcƟon, then a uƟlity indifference
price for accepƟng an (non-hedgeable) claim can be found. For
exponenƟal uƟlity funcƟons, quite explicit results can be found
(see Zariphopoulou (φττυ); Young and Zariphopoulou (φττφ);
Musiela and Zariphopoulou (φττψ); Hugonnier et al. (φττω); Hu
et al. (φττω); Musiela and Zariphopoulou (φττύb); Henderson
(φττφ, φττω) and Henderson and Hobson (φττύ)). Also for power
uƟlity funcƟons, parƟal results are known, see Hobson (φττψ);
Monoyios (φττϊ). For a general overview, see the book
Indifference Pricing by Carmona (φττύ).

A big disadvantage of uƟlity-based pricing is that it depends on
the specificaƟon of the uƟlity funcƟon at a specific horizon T . This
introduces an arƟficial dependency in the pricing on the horizon T .
AƩempts to resolve this issue were proposed by Henderson and
Hobson (φττϋ) and Musiela and Zariphopoulou (φττϋ, φττύa).

ψ.ϊ.φ Strong Time-Consistency
Our derivaƟons have used condiƟonal expectaƟons that are
sequenƟally evaluated using backward-inducƟon arguments. This
leads to the pricing pde’s we have found in equaƟon (ψ.υυ). Use of
backward-inducƟon techniques allows us to construct pricing
methods that are strongly Ɵme-consistent; see Hardy and Wirch
(φττω) and Jobert and Rogers (φττό). However, the concept of
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strong Ɵme-consistency for pricing methods is not uncontroversial.
See Roorda et al. (φττω); Roorda and Schumacher (φττϋ) for a
discussion.

ψ.ϊ.χ Bayesian Approach
Finally, note that as an alternaƟve to robust opƟmisaƟon, it is
possible to use Bayesian methods. In the Bayesian approach the
uncertainty about the model specificaƟon is specified in the form
of prior and posterior probability distribuƟons on the parameter
space. Porƞolio opƟmisaƟon and pricing is then carried out by
“averaging” over the parameter space (i.e. averaging over the
different alternaƟve model specificaƟons). For a discussion and
examples, see Lutgens (φττψ); Lutgens and Schotman (φτυτ).

ψ.ϋ Literature Overview
As menƟoned in the text, the Cost-of-Capital (CoC) approach was
originally proposed by the insurance industry (see CRO-Forum
(φττϊ)), based on ideas put forward by the Swiss insurance
supervisor in the so-called Swiss Solvency Test (SST) (see Keller and
Luder (φττψ)). For a criƟcal discussion on the risk measure implied
by the SST see Filipovic and Vogelpoth (φττό). The CoC method
was adopted by the European Union as the standard method for
the calculaƟons in the QuanƟtaƟve Impact Studies of the
Solvency II process; see CEIOPS (φττό); EIOPA (φτυτ).

Good Deal Bound pricing has been introduced by Cochrane and
Saá-Requejo (φτττ). Their basic ideas were extended by Černý and
Hodges (φττφ), Becherer (φττύ), Björk and Slinko (φττϊ)
andKlöppel and Schweizer (φττϋb). The connecƟons between
Good Deal Bound pricing and the numéraire porƞolio (which we
have called the stochasƟc discount factor, see eq. (χ.ό)) have been
explored by Becherer (φττυ, φττύ), Karatzas and Kardaras (φττϋ),
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Christensen and Larsen (φττϋ) and Delong (φτυυ).
Jaschke and Küchler (φττυ) highlighted the connecƟons

between Good Deal Bound pricing and the rich theory of coherent
risk measures. Coherent risk measures were introduced by Artzner
et al. (υύύύ, φττϋ). Later, this has been extended to the more
general class of convex risk measures by Föllmer and Schied (φττφ)
and Cheridito et al. (φττω). The connecƟon between convex risk
measures and pricing can be found in Cvitanić and Karatzas (υύύύ),
Carr et al. (φττυ), FriƩelli and Rosazza Gianin (φττφ), Detlefsen and
Scandolo (φττω), Klöppel and Schweizer (φττϋa), Stadje (φτυτ),
Delbaen et al. (φτυτ), and the papers by Cherny (φττϋ, φττύ,
φτυτ). In the actuarial literature, see Denuit et al. (φττϊ) and
Goovaerts and Laeven (φττό).

Model Ambiguity and robustness were made popular in
economics by Hansen and Scheinkman (υύύω), Hansen and Sargent
(φττυ), Cageƫ et al. (φττφ), Cont (φττϊ), Hansen et al. (φττϊ) and
Hansen and Sargent (φττϋ). However, ideas for robustness in
staƟsƟcs are much older, and date at least back to Huber (υύόυ)
(for a new ediƟon, see Huber and Roncheƫ, φττύ). Also, several
authors have applied robustness ideas to porƞolio opƟmisaƟon;
see Kirch (φττφ), Goldfarb and Iyengar (φττχ), Maenhout (φττψ),
Coleman et al. (φττϋ), Gundel and Weber (φττϋ), Rogers (φττύ),
Föllmer et al. (φττύ), Iyengar and Ma (φτυτ) and Kerkhof et al.
(φτυτ). Another branch of literature studies the noƟon of model
ambiguity on decisions that economic agents make; see Duffie and
Epstein (υύύφa), Duffie and Epstein (υύύφb), Chen and Epstein
(φττφ), Maccheroni et al. (φττϊ), Epstein and Schneider (φττό) and
Riedel (φττύ).



ψψ Ö � Ä � ½ Ö � Ö � Ù φω

ω. Combining Hedgeable and Non-Hedgeable Risk

This secƟon pushes our analysis one step further. We invesƟgate
an environment in which we have both a financial risk process
x(t) that can traded and hedged in a market, and also an
non-hedgeable insurance risk process y(t). Basically, this secƟon
seeks to combine the results from SecƟons χ and ψ.

ω.υ Model Ambiguity and Hedging
The process for the financial risk x(t) is given in equaƟon (χ.υ) and
the process for the non-hedgeable risk y(t) is given in (ψ.υ).
Similar to the setup in SecƟon ψ, an agent is considered that is
uncertain about the true value of the driŌ parameters m and a of
the financial and the insurance processes, respecƟvely. Assume
that the agent faces no uncertainty about the diffusion coefficients
σ, b and the correlaƟon parameter ρ between the the Brownian
MoƟons Wx and Wy .

To help us describe the uncertainty set, we introduce some
further notaƟon. The vector of driŌ rates µ, and the covariance
matrixΣ are defined as follows

µ :=
(

m
a

)
, Σ :=

(
σ2 ρσb
ρσb b2

)
. (ω.υ)

We now make the assumpƟon that the joint uncertainty in the driŌ
rates is described by the following set:

K := {µ0 + ε | ε′Σ−1ε ≤ k2}. (ω.φ)

The specificaƟon of the uncertainty in this form is moƟvated (like
in SecƟon ψ.ψ) by the fact that the economic agent can use
econometric esƟmaƟon techniques to esƟmate the driŌ rates. The
esƟmaƟon leads to the point esƟmate µ0. However, there is
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uncertainty surrounding this esƟmate. This uncertainty typically is
proporƟonal to the covariance matrixΣ. In other words, the agent
assumes that the true values of the driŌ parameters lie
somewhere within the confidence interval given by the setK. In
the one-dimensional case we considered in SecƟon ψ.ψ, the
uncertainty setK for the driŌ rate a simplifies to
a ∈ [a0 − kb, a0 + kb].

We want to invesƟgate what price the agent will aƩribute to a
derivaƟve that depends both on financial and insurance risk and
has payoff g(t + ∆t, x , y) at Ɵme t + ∆t . We furthermore
assume (like in SecƟon χ.φ) that the agent can hedge the financial
risk by invesƟng an amount Dt in the risky asset x at Ɵme t , but
cannot trade in the insurance asset y . Hence, the robust raƟonal
agent solves the following opƟmisaƟon problem for each Ɵme-step
[t, t + ∆t]:

max
Dt

min
εt

e−r∆tE
[εt ]
t

[
g
(
t + ∆t, xt+∆t , yt+∆t

)
− Dtxt+∆t

]
s.t. ε′Σ−1ε ≤ k2,

(ω.χ)
where E[εt ][ ] denotes taking the expectaƟon using the driŌ term
µ0 + εt for the processes x and y .

This “maxmin” opƟmisaƟon problem can be interpreted as a
two-player game. First, the agent chooses an amount Dt to invest
in x , and then Mother Nature chooses the worst possible
perturbaƟon εt of the driŌ µ0. But the agent is aware of the bad
intenƟons of Mother Nature, and therefore chooses the amount
Dt that maximises the minimal outcome of Mother Nature.

The opƟmal soluƟon for Dt is given by

D∗
t := −

(
gx + ρ

b
σ

gy

)
+ λ√

k2 − λ2

b
√

1 − ρ2

σ
|gy |, (ω.ψ)
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where λ is the market price of risk defined in equaƟon (χ.ϋ).
Several interesƟng things about this soluƟon are noteworthy.

First, the soluƟon D∗
t is only well-defined for λ2 < k2. This

corresponds exactly to the condiƟon encountered in SecƟon ψ.χ:
that the good deal bound κ should be larger than the market price
of risk for the financial market. Stated differently, if the agent is
confident that even in the worst case a posiƟve excess return can
be made by invesƟng in the financial market (i.e. when λ2 > k2),
then the agent will try to invest a massive amount in the financial
market and has a confident expectaƟon of geƫng very rich.

The second interesƟng thing to note is that the opƟmal hedge
posiƟon consists of two parts: the hedge porƞolio−(fx + ρ b

σ
fy)

and a “speculaƟve” porƞolio that is determined by the product of
the residual non-hedgeable risk b

√
1 − ρ2/σ fy and the “market

confidence factor” λ/
√

k2 − λ2. The market confidence factor
shoots to infinity if λ approaches k . For small values of λ, the
market confidence factor is approximately equal to λ/k , and the
speculaƟve investment is then approximately proporƟonal to the
market price of risk scaled down by a factor of k .

ω.φ Agent’s ValuaƟon
If we subsƟtute for each Ɵme-step [t, t + ∆t] the opƟmal
soluƟons for (D∗

t , ε∗t ) into (ω.χ), and then take the limit for
∆t → 0 (as we did in SecƟon χ.ω), we find a parƟal differenƟal
equaƟon for the price g(t, x , y):

gt + rgx + a∗gy + 1
2σ

2gxx + ρσbgxy + 1
2b2gyy − rg = 0, (ω.ω)

where the driŌ term a∗ for the insurance process is given by

a∗ = a0 − ρλb ± b
√

(1 − ρ2)(k2 − λ2), (ω.ϊ)
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where the sign of the last term depends on the sign of gy .
Although the expressions for a∗ may look a bit complicated, some
very nice interpretaƟons can be given for the expressions.

The first interpretaƟon for a∗ is an economic interpretaƟon.
Recall that the formula for the opƟmal hedge given in
equaƟon (ω.ψ) consists of two parts: a hedge porƞolio and a
“speculaƟve” porƞolio that depends on λ. Suppose that the agent
would only choose the hedge porƞolio Dt := −(fx + ρb/σfy).
SubsƟtuƟgn Dt into (ω.χ) yields an expression very similar to (ω.ω),
except that the driŌ term for the insurance process would be given
by a = a0 − ρλb ± kb

√
1 − ρ2. Therefore, by including the

speculaƟve porƞolio into the opƟmal hedge, the agent can finance
part of uncertainty in a∗ by exploiƟng the expected excess return
on equiƟes. This then results in the opƟmal driŌ term a∗, where
the residual non-hedgeable insurance risk kb

√
1 − ρ2 is shrunk

by an addiƟonal factor
√

k2 − λ2.
Note also the downward adjustment of the driŌ of the

non-traded asset y by the term−ρbλ. This downward adjustment
compensates exactly the excess return of y due to the correlaƟon
ρ with the traded asset x . This effect makes sense if we think in
terms of the Capital Asset Pricing Model (CAPM). In the CAPM, the
expected return of any asset is given by the formula
E[dy(t)] =

(
r + β(m − r)

)
dt , where β is given by the formula

β := ρbσ/σ2. Combining the expression for β with the definiƟon
of the market price of risk λ given in (χ.ϋ) yields
E[dy(t)] =

(
r + ρbλ

)
dt . Hence, the driŌ term a∗ in the agent’s

valuaƟon adjusts the driŌ in two steps: the first step−ρλb
corrects the driŌ of y for the excess return injected by the
correlaƟon with the traded asset, and the second term
b
√

(1 − ρ2)(k2 − λ2) adjusts the driŌ of y for the
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non-hedgeable risks.
The second interpretaƟon of equaƟon (ω.ϊ) is a geometric

interpretaƟon. Recall that the uncertainty setK is an ellipsoid
centred around µ0. Because the financial component x of the risk
vector is perfectly replicated, this means that the uncertainty
regarding the mean of the financial risk is eliminated, and is
replaced by the risk-free return r . The uncertainty for the mean of
the insurance process y is now confined to the intersecƟon of
uncertainty setK and the line m = r . The intersecƟon of a line
and an ellipsoid has two soluƟons: exactly the two soluƟons given
in equaƟon (ω.ϊ).⁷

This geometric interpretaƟon is illustrated in Figure υ, using the
following parameters: m0 = {4%, 7%, 10%}, r = 4%, a0 =
0,σ = 0.15, b = 1, ρ = 0.75 and k = 2/

√
25 = 0.4. The three

different values of m0 lead to λ = {0, 0.2, 0.4}, and these three
cases are illustrated in the sub-figures υ(a), υ(b) and υ(c). The
uncertainty setK is given by the interior of the ellipse, and the
point esƟmate µ0 is given by the point in the centre. The line
m = r is the verƟcal doƩed line, and the intersecƟon with the
ellipse gives the two soluƟons for a∗. Figure υ(a) illustrates the
case λ = 0. In this case, a∗ = a0 ± kb

√
1 − ρ2, which is the

“naive” confidence interval for a equal to the point esƟmate a0
plus/minus k Ɵmes the non-hedgeable insurance risk b

√
1 − ρ2.

The other sub-figures illustrate that for larger values of λ, the
ellipse moves to the right. This is a reflecƟon of the fact that higher
values of λ correspond to higher point esƟmates of m0. When the

⁷Note that this geometric interpretaƟon is equivalent to the result found in
Barrieu and El Karoui (φττω), where the pricing measure is characterised as the
“inf-convoluƟon” of the set of test measures (in our case, the ellipsoid) and the
set of marƟngale measures (in our case, the line m = r ).
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(a) λ = 0
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(b) λ = 0.2
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(c) λ = 0.4

Figure υ: Confidence interval for µ for different values of λ.
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ellipse moves to the right, the points a∗ move down (due to the
correlaƟon term−ρλb), and the points move closer together (due
to the factor

√
k2 − λ2). Figure υ(c) illustrates the largest allowed

value for λ. For larger values of λ, the ellipse no longer intersects
the line m = r , and the opƟmisaƟon (ω.χ) no longer has a finite
soluƟon.

ω.χ On the choice of k
This secƟon concludes by elaboraƟng on the choice of k . In the
one-dimensional case treated in SecƟon ψ.ω we took
k = 1.96/

√
43 = 0.30. This choice was moƟvated by

considering the ύω% confidence interval for the esƟmate of the
mean of the process y(t) using ψχ years of historical data.

In the two-dimensional case we considered in this secƟon, we
have to modify this argument slightly. If we used ψχ years of data
to esƟmate the vector µ = (m, a)′, then the confidence interval
for µ is given by the setK defined in equaƟon (ω.φ). The setK
describes a ύω% confidence interval if we take k2 equal to the ύω%
criƟcal value of a χ2-distribuƟon with φ degrees of freedom,
divided by the number of observaƟons. This value is given by
k2 = 5.99/43 = 0.139, which leads to the value k = 0.37.

For the one-dimensional case, we would take the ύω% criƟcal
value of a χ2-distribuƟon with υ degree of freedom, divided by ψχ,
which leads to k =

√
3.84/43 = 0.30, which is the same value

that was derived in SecƟon ψ.ω.
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ϊ. ApplicaƟons

This secƟon uses several examples to illustrate the concepts
developed in this paper.

ϊ.υ Pricing Long-Dated Cash Flows
As menƟoned in the introducƟon, the pricing of very long-dated
cash flows is an important problem for insurance companies and
pension funds. This secƟon illustrates the applicaƟon of the pricing
approach outlined in this paper to this problem.

We start by assuming that the interest rates are stochasƟc, and
can be described by a Vasicek (υύϋϋ) model. In this model we take
the instantaneous short rate r(t) and model it as

dr = a
(
θ − r

)
dt + σ dWr . (ϊ.υ)

In this equaƟon, θ is the long-term average of the interest rates,
and a is the speed of mean reversion.

When pricing cash flows, we have to disƟnguish two cases. For
maturiƟes up to χτ years, there are bonds traded in financial
markets, and the market is complete. This means that a porƞolio
of cash flows is priced at the same price as the value of a
replicaƟng porƞolio of bonds that matches the cash-flow paƩern.
This price can also be calculated by discounƟng the cash flows at
the zero-curve implied by the market.

For cash flows beyond χτ years, there are no bonds available,
which leads us in an incomplete market situaƟon. This calls for
applicaƟon of the methods outlined in SecƟon ψ to determine the
value of the cash flows.

For pricing short cash flows (i.e. cash flows promised to
policyholders), we have to adjust the interest rates downwards.
Applying the methodologies of SecƟon ψ to the interest rate
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Figure φ: Extrapolated term-structure of interest rates

dynamics (ϊ.υ), we get

dr = a
(
θ − k σ

a − r
)

dt + σ dWr , (ϊ.φ)

where we set k = 0.30. This formula implies that a zero rate with
maturity T > 30 has to be adjusted up or down (for long or short
cash flows, respecƟvely) by the formula

kσ
aT

(
(T − 30) −

(
1 − e−a(T−30)

a

))
. (ϊ.χ)

Assume that the long-term nominal interest rate is ψ% (for
example, composed of φ% inflaƟon plus φ% real interest rates). If it
is also assumed that a = 0.05 and σ = 0.01, then it is possible to
explicitly calculate the extension of the zero-curve beyond the
χτ-year point using formula (ϊ.χ). This is illustrated in Figure φ. The
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leŌ part of the curve between year τ and χτ shows a market-curve
that is flat at ψ%. Beyond year χτ we extrapolate the curve using
the up and down adjustment to the zero-rates given by
equaƟon (ϊ.χ). The boƩom line shows the extrapolaƟon of the
curve for short cash flows (i.e. cash flows promised to
policyholders). The upper line shows the extrapolaƟon of the
curve for long cash flows (i.e. cash flows to be received from
policyholders). The figure reveals, for long maturiƟes the
incompleteness of the market becomes more and more
pronounced in the extrapolated discount rates.

For further examples, see Cairns (φτττ), De Jong (φττόa) and
Iyengar and Ma (φτυτ).

ϊ.φ Pricing Longevity Risk
At the moment there is no well-developed market for longevity
risk. Hence, it is reasonable (for the Ɵme being) to make the
assumpƟon that longevity cannot be hedged, which implies that
we have to rely on the methods outlined in SecƟon ψ for pricing
longevity (and/or mortality) risk.

To provide a feel for the size of the numbers, this secƟon focuses
on one parƟcular summary staƟsƟc: the life expectancy at birth of
Dutch males. Figure χ plots the historical development of the life
expectancy at birth between υύωτ and φττϊ, based on data
downloaded from the Human Mortality Database (see
www.mortality.org). Two things are immediately obvious
from this graph: first, life expectancy has significantly increased in
the past ωτ years: from ϋτ years in υύωτ to nearly ϋό years in φττϊ.
Second, the different trends are clear: between υύωτ and υύϊτ, life
expectancy was increasing; then from υύϊτ unƟl υύϋτ, life
expectancy was decreasing; since υύϋτ, life expectancy has seen a
steady increase. It is exactly these “trend breaks” that make
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forecasƟng of human mortality so difficult.
Based on almost ϊτ years of data, an average increase in life

expectancy of υ.ϊ months per years is esƟmated, and a standard
deviaƟon of χ.φ months per year. The Dutch Actuarial AssociaƟon
has recently published new life tables, idenƟfying a trend of υ.ό
months increase in life expectancy for Dutch males per year, which
is very close to the number found here.

However, when we want to price a porƞolio of contracts where
we worry about people living longer (as is typical for life insurance
and pension porƞolios). Using the methods outlined in SecƟon ψ,
we should (for pricing purposes) therefore adjust the trend
upwards (in the more conservaƟve direcƟon) by τ.χτ standard
deviaƟon, leading to a “prudent” trend of υ.ϊ+τ.χτ*χ.φ = φ.ϊ
months per year increase in life expectancy. The “prudent” up and
down trends are also illustrated in Figure χ for the period from
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φτυτ unƟl φτϊτ.
For further examples, see Wang et al. (υύύϋ), Young and

Zariphopoulou (φττφ), Young (φττψb), Milevsky et al. (φττϊ),
Bayraktar and Young (φττϋ), Milevsky and Young (φττϋ), Bayraktar
and Young (φττό), Hári et al. (φττό), Ludkovski and Young (φττό),
Young (φττό) and Bayraktar et al. (φττύ).

ϊ.χ Pricing Non-Hedgeable Equity Risk
The final example examines the pricing of equity risk. A typical
market-consistent seƫng assumes that equiƟes can be freely
traded in financial markets, and that equity risk is fully hedgeable.
This means that equity risk is priced using the risk-neutral methods
outlined in SecƟon χ.

However, in the case of very large pension funds this
assumpƟon is quesƟonable. If very large pension funds would buy
or sell very large equity posiƟons, they would move the market
prices. Hence, large pension funds are not “price takers”, but can
move the market. In parƟcular, in Ɵmes of crisis, large pension
funds could push the market down even further if they would try
to sell equiƟes in response to the drop in prices. Fortunately, this
has not happened during the last two crises, thanks to adequate
“relaxaƟon” of the underfunding rules by the Dutch Central Bank.

If we take the fact that large pension funds cannot trade without
moving the market to the extreme that large pension funds cannot
trade at all, then we have again an incomplete market situaƟon,
and equity exposures should be priced using the methods of
SecƟon ψ.

Another example of “equity incompleteness” is the case of
insurance companies that give profit-sharing to their policyholders
based on the performance of their own investment porƞolio. In
the tradiƟonal approach, such as that of Grosen and Jorgensen
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(φτττ), such profit-sharing opƟons are priced with the risk-neutral
methods of SecƟon χ. However, there is a problem: risk-neutral
pricing is based on the cost of the replicaƟng porƞolio of the
contract. But in the case of profit-sharing on your own porƞolio, it
is impossible to hedge: at the moment you start buying
instruments to hedge your own profit-sharing opƟons, you start
changing the composiƟon of your asset porƞolio, which then starts
changing the nature of the profit-sharing. One approach to solve
this problem was suggested by Kleinow (φττύ), where one tries to
find the investment porƞolio with profit-sharing that is
“self-hedging”. The soluƟon to this approach is that the only
porƞolios that are “self-hedging” are those that have no
investment risk (and thus have perfectly predictable
profit-sharing). Although mathemaƟcally correct, this outcome
does not reflect the behaviour of insurance companies in reality.
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An alternaƟve approach would be to assume that these
profit-sharing opƟons are “non-hedgeable” and should be valued
using the methods of SecƟon ψ.

What kind of pricing do we get for the “non-hedgeable equity”
approach? Figure ψ plots the cumulaƟve return of the S&P equity
index between υύωτ and φττύ. The average return over this period
is υτ.ψ% with a standard deviaƟon of υϊ.ύ%. When we need to
price an non-hedgeable equity posiƟon as an asset or as a wriƩen
put-opƟon, we adjust the return down by τ.χτ standard deviaƟon
to ω.χχ%. This higher level of conservaƟsm reflects the addiƟonal
risk associated with holding an non-hedgeable posiƟon.

For further examples, see Davis (υύύϋ, φττϊ) and De Jong
(φττόb).
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summary of the discussion
By Marc de Graaf

Pricing in Incomplete Markets 

By Antoon Pelsser (Maastricht University)

Discussants: Hans Schumacher (1st) and Dirk Broeders (2nd)

Hans Schumacher summarized the contribution by stating 

that the paper argues that three methods of computing prices 

in incomplete markets are mathematically equivalent. The 

liability is modeled in continuous time, and expectation is 

taken after modifying the drift by к times the volatility in the 

adverse direction. For к, the value 0.5 is suggested. This specific 

recommendation cuts through the academic discussion and 

provides a clear starting point.

	 Schumachers main comments focused on the purpose of 

pricing, the efficient boundary, the linearity assumption of 

the price, the 6% rule, the scaling, and the type of analysis.  

Schumacher mentioned that the purpose of price computations 

could be price setting, incremental market value computations, 

or determining the value of liabilities for regulatory purposes. He 

presumed that Pelssers paper is primarily focused on the last of 

these. This was confirmed by Pelsser.

	 The discussant continued by pointing out that regulation is 

used to prevent accidents from happening, without constraining 

activity too much. The ‘right’ balance presumably is a political 

decision, so that the contribution of science is perhaps just the 

provision of a suitable parameterization of the efficient boundary. 

From this perspective, the question is not: what is the right value 
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of к? But rather: do we trace out the efficient boundary by letting к 

vary? 

	 The pricing equation in the paper is nonlinear, so that in 

general the computed value of a portfolio of two liabilities is 

not equal to the sum of the computed values of the liabilties 

separately. To get a linear pricing equation, the correction 

to the drift should take place through a covariance (with the 

kernel process) rather than through a standard deviation. Such 

a correction would lead to an extra charge for liabilities that 

are large during bad economic times (and a reduced charge for 

liabilities that are small during bad economic times). Pelsser 

argued that nonlinearity is implicitly included in section 5. Here 

the phi’s can turn negative if losses turn large. Schumacher 

suggested that this argument takes the covariance into account. 

Pelsser agreed, but explained that the mathematics in the paper 

had to be reduced, according to the editorial board. 

	 The 6% rule for the cost of capital has acquired the status of a 

standard, but the origin is not very clear. When considering the 

value of 6%, the resulting Sharpe ratio is smaller than the typical 

Sharpe ratios found in equity markets. Does this mean that the 

market is more conservative than the regulator? Schumacher 

found it to be an interesting question, but asserted that it might 

be important to take into account that an investment decision is 

not the same as a regulatory decision.

	 The scaling of VaR by the square root of dt does not reflect a 

general property of stochastic processes. Presumably the scaling 

law could be justified at least for small dt’s under suitable 

assumptions (i.e. jumps are not allowed). 

	 Finally, Schumacher noted that the approach followed by 

Pelsser is closer to the actuarial tradition than to the standard 
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literature on finance. The analysis focuses on a single risk and 

does not incorporate a pricing kernel. 

The second discussant, Dirk Broeders, emphasized the relevance 

of this paper. Pension assets and liabilities stretch far into the 

future. Broeders found, however, that the paper neglects the 

derivative markets, which also offer prices beyond 30 years from 

now. Is the derivative market considered not to be a real market? 

Broeders also argued that if pension funds are price setters, then 

they can use the methodology in this paper, but then hedging 

would no longer be useful. Furthermore, Broeders illustrated that 

the techniques proposed in this paper have a significant impact. 

For example applying example 6.1 from the paper to pension 

funds results in a decrease in the funding ratio of 10 percentage 

points. He also suggested that Pelsser could discuss the proposals 

under Solvency 2 (SII) of an ultimate forward rate and an illiquidity 

premium.

	 Pelsser argued that in SII a normal distribution is assumed. This 

assumption has a problematic implication, which is that multiple 

worst-case scenarios will not happen at the same time. However, 

it appears that when there is an economic crisis, everything 

goes bad (and the worst-case scenarios do occur jointly at the 

same time). This is where the SII falls apart, and gives 40% of 

diversification benefits away for free. 

	 Broeders argued that, to some extent, model risk is already 

taken into account in supervision, and that in the future partial 

internal models are being considered to buffer for specific risk 

factors. 

	 Broeders wrapped up his comments by summarizing the key 

point of the paper; namely, that for unhedgeable risks a prudent 

approach is advocated. Pelsser replied that, to some extent, he 
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is ‘pricing the impossible’. However, as soon as more prices are 

available, the model adapts to it. Broeders stated that Pelsser kept 

the market price of risk constant, but that it does react over time. 

When averaging, one could deal with the cyclical behavior of the 

market (this was a question from the public). Numerically, one 

could implement the crisis effect on the willingness to take risk 

(which is smaller just after a crisis occurred). 
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Pricing in incomplete markets

This Netspar Panel Paper by Antoon Pelsser (Maastricht 

University) discusses the pricing of contracts in an 

incomplete market setting. For life insurance companies 

and pension funds, it is always the case in practice that not 

all of the risks in their books can be hedged. Hence, the 

standard Black-Scholes methodology cannot be applied in 

this situation. The paper discusses and compares several 

methods that have been proposed in the literature in recent 

years: the Cost-of-Capital method (the current industry 

standard), Good Deal Bound pricing, and pricing under 

Model Ambiguity.




