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PREFACE

Netspar stimulates debate and fundamental research in the field
of pensions, aging and retirement. The aging of the population

is front-page news, as many baby boomers are now moving

into retirement. More generally, people live longer and in better
health while at the same time families choose to have fewer
children. Although the aging of the population often gets negative
attention, with bleak pictures painted of the doubling of the ratio
of the number of people aged 65 and older to the number of the
working population during the next decades, it must, at the same
time, be a boon to society that so many people are living longer
and healthier lives. Can the falling number of working young
afford to pay the pensions for a growing number of pensioners?
Do people have to work a longer working week and postpone
retirement? Or should the pensions be cut or the premiums paid
by the working population be raised to afford social security for

a growing group of pensioners? Should people be encouraged

to take more responsibility for their own pension? What is the
changing role of employers associations and trade unions in

the organization of pensions? Can and are people prepared to
undertake investment for their own pension, or are they happy
to leave this to the pension funds? Who takes responsibility for
the pension funds? How can a transparent and level playing field
for pension funds and insurance companies be ensured? How
should an acceptable trade-off be struck between social goals
such as solidarity between young and old, or rich and poor, and
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individual freedom? But most important of all: how can the
benefits of living longer and healthier be harnessed for a happier
and more prosperous society?

The Netspar Panel Papers aim to meet the demand for
understanding the ever-expanding academic literature on the
consequences of aging populations. They also aim to help give
a better scientific underpinning of policy advice. They attempt
to provide a survey of the latest and most relevant research,
try to explain this in a non-technical manner and outline the
implications for policy questions faced by Netspar's partners. Let
there be no mistake. In many ways, formulating such a position
paper is a tougher task than writing an academic paper or an
op-ed piece. The authors have benefitted from the comments of
the Editorial Board on various drafts and also from the discussions
during the presentation of their paper at a Netspar Panel Meeting.

| hope the result helps reaching Netspar's aim to stimulate
social innovation in addressing the challenges and opportunities
raised by aging in an efficient and equitable manner and in an
international setting.

Henk Don
Chairman of the Netspar Editorial Board
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PRICING IN INCOMPLETE MARKETS

Abstract

This Netspar Panel Paper discusses the pricing of contracts in an
incomplete market setting. For life insurance companies and
pension funds, it is always the case in practice that not all of the
risks in their books can be hedged. Hence, the standard
Black-Scholes methodology cannot be applied in this situation. The
paper discusses and compares several methods that have been
proposed in the literature in recent years: the Cost-of-Capital
method (the current industry standard), Good Deal Bound pricing,
and pricing under Model Ambiguity. Although each of these
methods has a very different economic starting point, we show
that all three converge for small time-steps to the same limit. This
convergence provides a basis for comparing the different
parameters used by the three methods. From this comparison we
conclude that the current cost-of-capital of 6% used by the
industry and CEIOPS is too low, since it is not in line with the values
implied by the Good Deal Bound and Model Ambiguity methods. A
cost-of-capital of 12% is needed to bring the method in line with
the other two methods.
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1. Management Summary & Policy Recommendations

Life insurance companies and pension funds have liabilities on
their books with very long-dated maturities. The valuation and
risk-management of these very long-dated contracts is therefore
an important problem in practice.

The standard theory (based on replicating the cash flows) fails
because there are simply no financial contracts that last this long.
In well-developed economies (such as the euro-zone countries and
the US) government bonds have maturities up to 30 years.

On the other hand, regulators in many countries (especially in
Europe under the Solvency Il project) are insisting that insurance
companies (and in The Netherlands, also pension funds) value
their liabilities on a “market-consistent” basis. Hence, to value
these long-dated cash flows in a market-consistent way, one is
forced to extend the term-structure of interest rates, which can be
observed from financial markets, beyond the maturity of the
longest dated instrument that can be observed in the market. In
the current economic circumstances, with low long-term interest
rates, pension funds are reporting low funding levels as a
consequence of these valuation rules. A related issue is how to
select financial instruments that give the best possible investment
strategy (or hedge) for these very long-dated cash flows. In many
cases this involves striking a balance between seeking assets with a
higher return, at the expense of accepting a higher mismatch risk
between the liabilities and the assets.

From a scientific point of view, the problem of pricing these very
long-dated contracts boils down to the valuation of contracts in an
incomplete markets setting. This means trying to price contracts
where not all of the risks can be traded (and hedged) in financial
markets. In the past ten years significant progress has been made
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regarding this subject. This Panel Paper discusses and compares
several methods that have been proposed in the literature: the
Cost-of-Capital method (the current industry standard), Good Deal
Bound pricing, and pricing under Model Ambiguity. We show that
each of these three methods converges for small time-steps to the
same limit. This convergence provides a basis for comparing the
different parameters used by the three methods.

The results presented in this paper allow us to provide the
following policy recommendations:

¢ The “Cost-of-Capital” method proposed by the insurance
industry and CEIOPS (i.e. the market-consistent price of an
insurance contract, which is determined by the market
value of the replicating portfolio, plus a mark-up for the
unhedgeable risks: the risk margin; see EIOPA (2010) for
further details) has qualitatively the right properties, but
lacks a solid theoretical foundation. A pricing method with a
rigourous theoretical foundation can be obtained by using
the pricing methods put forward in this paper.

¢ |n particular, the formulas for calculating market-consistent
prices for multi-year products—as put forward by EIOPA in
QISs—Ilack a theoretical basis, and should be seen as a
coarse approximation at best. The main problem is that the
proposed QIS5-methodology is not time-consistent. We
recommend that CEIOPS adopts a time-consistent pricing
method based on backward-induction calculation
techniques.

e The time-consistent pricing method proposed in this paper
calculates prices under an “actuarially prudent” model,
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where (for each time-step) the best-estimate mean is
adjusted by k times the standard deviation of the
unhedgeable risk of the whole portfolio. The Good Deal
Bound approach implies k > 0.25, the Model Ambiguity
approach implies k ~ 0.30, and the Cost-of-Capital
approach implies k = 0.15. The values k for the first two
approaches are in line with each other, but the value
implied by the Cost-of-Capital method seems too low. A
value of k = 0.30 is needed to bring the Cost-of-Capital
method in line with the other two methods, which
corresponds to a cost-of-capital of 12% (instead of the 6%
currently proposed by the industry and CEIOPS).

Regulators are particularly vulnerable to model risk. When
the regulator puts forward a very explicitly specified
standard model (as is currently happening under

Solvency Il), then competitive market forces will ensure that
most of the risk accumulates at the “weakest point” of the
regulator’s model. To guard against this model risk, we
propose that the regulator adopts a robust approach to
model risk. This can be achieved by putting forward several
alternative models, and the industry should then calculate
Solvency Capital on the basis of the worst outcome under
the different models.
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2. Introduction

Life insurance companies and pension funds have liabilities on
their books with very long-dated maturities. Most people start
saving for their pension from age 25, and people are expected to
live to age 85, with the oldest people living to age 115. Hence,
pension funds and life insurance companies are facing contractual
obligations that can easily last 60 years—and sometimes even 80 or
90 years—into the future. The valuation and risk-management of
these very long-dated contracts is therefore an important problem.
To give a feel for the size of the problem: for life-insurance and
pension products, a portion of roughly 20% of the net present
value of the cash flows is located in the tail of 30+ years.

The standard theory (based on replicating the cash flows) fails
because there are simply no financial contracts which last this
long. In well-developed economies (such as countries in the
euro-zone and the US), the longest government bonds have
maturities up to 30 years. In developing countries (such as Eastern
Europe, and Latin America and Asia), government bonds are issued
with much shorter maturities (typically only up to ten years, and
sometimes even much shorter).

On the other hand, regulators in many countries (especially in
Europe under the Solvency Il project) are insisting that insurance
companies (and in The Netherlands, also pension funds) value
their liabilities on a “market-consistent” basis. Hence, to value
these long-dated cash flows in a market-consistent way, one is
forced to extend the term-structure of interest rates, which can be
observed from financial markets, beyond the maturity of longest
dated instrument that can be observed in the market. In the
current economic circumstances, with low long-term interest rates,
pension funds are reporting low funding levels as a consequence of
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these valuation rules. A related issue is how to select financial
instruments that give the best possible investment strategy (or
hedge) for these very long-dated cash flows. In many cases this
involves striking a balance between seeking assets with a higher
return, at the expense of accepting a higher mismatch risk
between the liabilities and the assets.

Pricing calculations serve multiple purposes. One of these is
price-setting, which involves the calculation of the amount of
money for which a contract can be sold to a customer. A second
purpose has to do with pricing calculations used as a basis for
corporate policy. This involves determining what the profit margin
is for each contract sold. Alternatively, by determining for which
price the profit is equal to zero, an institution can find the
minimum price at which a product still can be sold profitably.
These types of calculations are typically made when new products
are being introduced by the institution. Third, pricing calculations
are done for reporting and capital adequacy purposes. In this case,
one uses the pricing calculations to (re)calculate the value of all
assets and liabilities in the balance sheet based on current
economic circumstances. As a result, one can then determine the
surplus (or the coverage ratio) of assets versus liabilities. In
practice, different calculation methods are often applied for the
different pricing purposes. Ideally, one should use the same
calculation methodology for all applications in order to ensure
internal consistency.

From a scientific point of view, the problem of pricing very
long-dated contracts boils down to the valuation of contracts in an
incomplete markets setting. This means that we are trying to price
contracts where not all of the risks can be traded (and hedged) in
financial markets. In the past ten years significant progress has
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been made regarding this subject. Several approaches have been
investigated with the common goal of trying to identify a pricing
measure (or pricing kernel) that prices traded risks consistently
with prices observed in the market and that also includes an
extension for non-traded risks. The big problem is how to
construct such an extension in a sensible way.

This panel paper first discusses the Cost-of-Capital (CoC) method
proposed by the insurance industry. This method has become the
de facto industry standard, which has also been adopted by the
European Union for the Quantitative Impact Studies (QIS) in the
Solvency Il process. The idea behind the CoC method is that the
insurance company has to hold a buffer for the non-hedgeable
risks on top of the replicating portfolio. Hence, pricing consists of a
“best-estimate” term plus a mark-up for the non-hedgeable risks.
We discuss how to construct a time-consistent extension of the
CoC methodology, and we derive an equation for how to calculate
CoC prices.

A second approach discussed in this paper, is the Good Deal
Bound (GDB) method. The GDB approach looks at the risk/return
trade-off of non-hedgeable risks. This risk/return trade-off for the
non-hedgeable risks is then compared to the risk/return trade-off
that we can observe for traded assets (where it is called the market
price of risk). The GDB method then calculates prices for
non-hedgeable assets by making sure that the risk/return trade-off
for any asset does not exceed a given upper bound. This upper
bound is put on the prices, under the assumption that economic
agents will exploit trading opportunities that are “too good”

(i.e. have a risk/return trade-off that is too high).

The third approach discussed in this paper is based on model

ambiguity and robustness. Although this methodology has been
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widely used in engineering for decades, it has attracted attention
in economics only in recent years. (See, for example, the book
Robustness by Hansen and Sargent (2007).) The fundamental
premise in the robustness approach is that we are uncertain about
the correct specification of our model. Therefore, when we try to
make decisions (like pricing and hedging a liability) we explicitly
want to take the model-uncertainty into account. This can be
implemented mathematically as follows. First, specify a set of
alternative models to the current base model. Then assume that
we are playing against a “malevolent mother nature” that tries to
pick the worst possible model out of the set of alternative models
(given the decisions we have committed to). Since we are,
however, aware of this, we try therefore to make decisions that are
as resilient as possible given the worst-case actions of mother
nature.

This Panel Paper shows that each of these three approaches
converges for small time-steps in the limit to the same pricing
equation. This is illustrated with several examples. Unfortunately,
most of the academic literature discussed in this paper is written in
rather abstract mathematical language, making the results very
difficult to access for non-technical readers. One of the
contributions that this Panel Paper hopes to make is to present the
results in a more intuitive way.

The remainder of this paper is organised as follows. Section 3
briefly recalls the results of how to calculate prices in a complete
market setting. Section 4 then analyses the other extreme, an
incomplete market setting when we only have risks that are not
traded in a market. In this setting we derive our main results about
the mathematical equivalence of the three pricing methods under
consideration. Section 5 considers the case in which we have both
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types of risks (traded and non-traded), and we show how the
results from the previous section generalise in this case. Finally,
Section 6 shows some applications of the pricing methods we have
developed.
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3. Pricing in Complete Markets

This section provides an overview of the theory of pricing payoffs
in complete markets. In a complete market, every risk driver can be
traded in a market—and every risk can thus be hedged. In the case
of complete markets, every payoff can be priced explicitly using
arbitrage-free pricing.

3.1 Binomial Tree
To illustrate the main ideas, we use a simple mathematical setting.
We have a risk driver W, (t), which is a Brownian Motion. We also
assume an asset price process x(t), which is given by the diffusion
equation

dx = m(t, x) dt + o(t, x) dW,, (3.1)

where m(t, x) and o(t, x) denote the drift and diffusion of the
return process x(t). We assume that x(t) can be traded in a
market.

For example, if we model a stock price S(t) as x(t), and we set
m(t, x) = pux and o(t, x) = ox, then we recover the famous
Black and Scholes (1973) model.

We also assume a riskless asset B, which earns the risk-free
interest rate r. The value of the riskless asset is given by

dB = rB dt. (3.2)

We wish to consider a discretisation scheme for the return
process x(t) for the time period [t, t + At] in the form of a
binomial tree:

+o+v At with prob.

—oV/At with prob. 3.3)

x(t+At) = x(t)+mAt+{

NI=N|=

where we have suppressed the dependence of m(t, x) and
o(t, x) on (t, x) for ease of notation.
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3.2 Pricing by Replication

Suppose we have a derivative (¢, x) that has a payoff that
depends on x. Suppose that we know the price of the derivative at
time t + At for any value of x(t + At); i.e. we know the
function f(t + At x(t+ At)). The question is: how do we
determine the value for f one time-step earlier at time t?

The answer to this question was developed by Fisher Black,
Myron Scholes and Robert Merton in the early 1970s. They used
the notion of pricing by replication, which won Scholes and Merton
the Nobel Prize in economics in 1997. The idea works as follows.
Suppose we buy a portfolio of D units of the risky asset x and an
amount B invested in the risk-free asset. Then at time t this
portfolio has value (Dx(t) 4+ B). Attime t + At the portfolio has
two possible values (using the binomial discretisation (3.3))

{ Dx, + e"™2tB with prob.

Dx_ + e™tB with prob. (3.4)

NIRN ([~

where x;. is shorthand notation for x;. := x(t) + mAt + ov/At.
Given the binomial discretisation for x(t + At), the derivative

f() has two possible values at time t + At: either

fo:=f(t+ At,x,)orf_:=f(t+ At, x_). If we want to

match the values of our portfolio (Dx(t) + B) with the value of

our derivative f at time t + At, we have to solve the following

system of equations:

Dxy + eMB = fy (3.5)
Dx_ + e™AtR — F !
The solution is given by D = Xfi _and B = e rAtlx ii f_xj

We have now explicitly constructed the replicating portfolio for
the derivative (). The brilliant insight of Black, Scholes and
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Merton was that the price of the derivative f(t, x) at time ¢t must
be equal to the price (Dx(t) + B) of the replicating portfolio. If
this would not be the case, there would be an arbitrage
opportunity: two different prices for two instruments that have
exactly the same value at time t + At. Therefore, we calculate
the value at time t of the derivative 7 (¢, x) by evaluating

(Dx(t) + B)!

f(t,x)=1 (1 —rAt — <M> \/A_t> fr+

o(t,x)
1 <1 — rAt+ (%) \/At> f. (3.6)
The term % measures the excess return above the risk-free

rate of the riski/ asset divided by the standard deviation of the risky
asset. This ratio is known as the market price of risk, which will be
denoted by
m(t, x) — rx
)\ t, X)) = ——F. .
(t x) ot ) (3.7)

The market price of risk is a positive quantity, as the return
m(t, x) on a risky asset is larger than the return rx on a risk-free
asset. The market price of risk will turn out to be quite crucial in
the rest of our story.

3.3 Deflator Pricing
The binomial pricing equation (3.6) admits several different
interpretations. The first interpretation worth noting is the

'Please note that the equality is not exact, as we have omitted terms of higher
order than At. On the other hand, the binomial approximation (3.3) of the pro-
cess x is also not exact. However, when we consider the limit for At — 0 then
all of the approximations converge to the correct answer.
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interpretation as a pricing operator with respect to a deflator or
pricing kernel.

Interpret (3.6) as taking an expectation, using the original
binomial probabilities 3 and 1, of the adjusted derivative values
(1 —rAt — A(t, x)V/At) £y and
(1 — rAt + A(t, x)V/At) f_. The adjustment factor is different
for the “plus” and the “minus” state of the world; hence, the
adjustment factor is a random variable. In fact, we can interpret
the adjustment factor as the binomial discretisation of the random
variable £(t), which is given by

dé = —r& dt — \(t, x)& dW,. (3.8)

The random variable £(t) is known as the deflator or the pricing
kernel. Note that the volatility of the pricing kernel is equal to
minus the market price of risk —A(t, x). The minus sign indicates
than whenever W, (t) decreases, then £(t) increases. This has
the effect of putting more weight on “bad” outcomes of the
process x (i.e. low values of W, ) than on “good” outcomes (high
values of W,).

Using the deflator interpretation, re-write the pricing equation

(3:6)2s E:[¢(t + At)f(t + At)]
i) = ) ’

where [E,[] denotes the expectation operator conditional on the
information available at time t, in particular the information that
the process x(t) at time t is equal to the value x.

(3.9)

3.4 Risk-Neutral Pricing
An alternative interpretation of the pricing equation (3.6) is as a
discounted risk-neutral expectation. Instead of using the original
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binomial probabilities and adjusting the payoff (as was done in
Section 3.3), we can adjust binomial probabilities and leave the
payoff unchanged. When doing this, we must ensure that the new
probabilities are created still sum to 1. The adjusted binomial
probabilities are given by 2 (1 — rAt — A(t, x)V/At) and

1(1 — rAt + A(t, x)V/At). However, when these two numbers
are added together we get (1 — rAt), which is less than 1. An
elegant way to adjust the weight-factors is by re-writing? them as

e "2t (1 — \(t, x)V/At) and e A2 (14 A(t, x)VAt). Now
re-write the pricing equation (3.6) as

f(t, x) = EZ [e ™2 f(t + At)], (3.10)

where [E?[] denotes the conditional expectation operator with
respect to the adjusted binomial probabilities

g=21(1-X x)\/A_t) (3.11a)
1—q=1(1+A(t x)VAt) (3.11b)

for the “plus” and “minus” state, respectively.

Like in Section 3.3, the adjusted probabilities g and (1 — q) put
more weight on the “minus” state compared to the original
binomial probabilities of 3. In fact, the expectation of x(t + At)
is calculated using the adjusted binomial probabilities, we find that
EX[x(t + At)] = x(t)e™ . Hence, under the adjusted
probabilities, the process x(t) grows with the risk-free rate r,
which is lower than the true growth rate m(t, x) of the process
x(t).

Wrapping up this section, we would like to stress that the pricing
formulze (3.9) and (3.10) will give exactly the same outcome. They

2Again, we are ignoring terms of higher order than At.
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are nothing more than different representations of the same
binomial pricing equation (3.6).

3.5 Partial Differential Equation
Up until now, we have focused extensively on the pricing of a
derivative contract for one single time-step [¢, t + At]. Obviously,
we are ultimately interested in pricing contracts of the whole life
[0, T]. One method for converting a “one-step” pricing formula
into a “whole interval” pricing formula is to apply the one-step
pricing formula using a backward-induction procedure. In other
words, start at the end-date 7 and then move backward in time by
repeatedly applying the one-step pricing formula for each
time-step At. The backward-in-time nature of this algorithm
ensures that at each time t during the calculation the valuation
formula accounts for all of the remaining uncertainty until the
maturity date T. Hence, use of backward-induction makes it
possible to construct a pricing operator that is time-consistent.
This subsection considers the limit for At — 0. Assume that
f(t + At, x) is sufficiently smooth in ¢ and x, such that we can
apply for all values of (t, x) the Taylor approximation

f(t+ At,x+ h) = f(t+ At, x) +
f(t+ At x)h+ L (t + At, x) 0 + O(R?), (3.12)

where subscripts on f denote partial derivatives. If we apply the
binomial approximation (3.3) for the process x(t), this yields
fo = f(t + At,x + mAt + ov/At) and
fo=f(t+ At x + mAt — oV/At).

If we substitute the Taylor approximation (3.12) into these
expressions and then substitute into the one-step binomial pricing
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equation (3.6), this yields

0= f(t + At,x) — f(t,x) + rxfx(t—i— At,x)At +
1026 (t + At x) At — rf (t + At, x) At + O(AL?).
(3.13)

Note that due to the adjustment factors in the binomial pricing
equation (3.6), the true growth rate m(t, x) has disappeared
from (3.13), and has been replaced by the risk-free growth rate rx
that multiplies the term £, (t + At, x) At.

Now, divide by At and take the limit for At — 0, which yields

fo 4 rxfy + 0% fo — rf =0, (3.14)

where we have suppressed the dependence on (¢, x) to lighten
the notation. Equation (3.14) is a partial differential equation (pde)
for the derivative price f(t, x). The price of any derivative on the
underlying process x(t) is a solution to (3.14) with respect to a
boundary condition f (T, x(T)) that defines the payoff as a
function of x( T) at the maturity date T.

3.6 Literature Overview

The literature on pricing in complete markets has been developed
and extended since the 1970s. It started with the seminal papers
by Black and Scholes (1973) and Merton (1973). The binomial tree
pricing model was developed by Cox et al. (1979). The connection
to martingale measures was developed by Harrison and Kreps
(1979) and Harrison and Pliska (1981). Significant generalisations
were achieved for more general stochastic processes by Delbaen
and Schachermayer (1994). For an introduction to pricing
derivatives, see the textbook by Hull (2009).



PRICINGININCOMPLETE MARKETS 27

4. Pricing non-hedgeable Risk

Section 3 considered the case of a complete market—one in which
the underlying risk driver can be traded. This section considers the
opposite case, where the underlying risk drivers cannot be traded.
This makes it no longer possible to construct a replicating portfolio,
which was the underlying basis for the pricing method in Section 3.
Instead, we have to define a pricing operator to determine the
value of a payoff.

This has been the subject of study of actuaries for a long time.
The basic idea for a pricing operator is to use the expected value of
the payoff minus a “penalty term” that depends on the risk of the
payoff. Many different pricing operators have been proposed (for
an overview, see Gerber (1979), Deprez and Gerber (1985), Young
(2004a) and the textbook by Kaas et al. (2008)). Actuaries make a
distinction between two main classes of pricing operators. One
class uses standard deviation as a measure of risk, the other class
uses variance as the measure of risk. This Panel Paper focusses on
pricing operators of the first class. Section 4.6 provides a literature
overview of alternative pricing methods that belong to the second
class.

4.1 Binomial Tree

Let us introduce a new risk driver W/, which is a Brownian Motion.
We also assume a process y(t), which is given by

dy = a(t, y) dt + b(t,y) dW,. (4.1)

Note that we assume that y(t) cannot be traded in a market. Like
in Section 3, here we also consider the binomial discretisation for
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the process y for a time-step At as

+bv At with prob.

—byV/ At with prob. (4.2)

y(t+At) = y(t)+ aAt+ {

NI=N=

Furthermore, we want to consider a derivative g(t, y) which has a
payoff that depends on y.

4.2 Cost-of-Capital Pricing
A pricing principle that is widely used in practice is the
Cost-of-Capital (CoC) Principle. This was introduced by the Swiss
insurance supervisor as a part of the method to calculate solvency
capitals for insurance companies (see, e.g. Keller and Luder, 2004).
In recent years, the CoC method has been widely adopted by the
insurance industry in Europe, and has also been prescribed as the
standard method by the European Insurance and Pensions
Supervisor for the Quantitative Impact Studies (see EIOPA, 2010).
The CoC approach is based on the following economic reasoning.
First consider the “expected loss” E[g( T, y)] of the insurance
claim g( T, y) as a basis for pricing. But this is not enough; the
insurance company also has to hold a capital buffer against the
“unexpected loss”. This buffer is calculated as a Value-at-Risk over
a time horizon (typically one year) and a probability threshold g
(usually 0.995, or even higher). The unexpected loss is then
calculated as VaR,[g( T, y)]. The capital buffer is borrowed from
the shareholders of the insurance company (i.e. the buffer is
subtracted from the surplus in the balance sheet). Given the very
high confidence level, in many cases the buffer can be returned to
the shareholders—although there is a chance that the capital
buffer is needed to cover an unexpected loss. Hence, the
shareholders require compensation for this risk in the form of a
cost-of-capital premium. This cost-of-capital premium needs to be
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included in the pricing of the insurance contract. If we denote the
cost-of-capital by ¢, then the CoC pricing equation is given by

g(t.y) = e T (Eg(T, y)] + 0VaRg[g(T.y)]). (43)

4.2.1 Time-Consistency
The pricing method defined in equation (4.3) has a methodological
problem: it is defined for a one-year horizon (i.e. t = T — 1). An
important practical question is, how to extend the pricing formula
to longer horizons? The approach adopted by the industry is a
simple rule-of-thumb; see Keller and Luder (2004). The idea is as
follows: you first make a projection of the contract value along the
“best-estimate path” of the risk driver given by
E; [g(T,y(T)) | y(t) = [Eo[y(t)]} forall0 <t < T. Then, at
annual points (t = 1, 2, 3, ...) you approximate the Value-at-Risk
(VaR) by considering the impact of a 99.5% shock for the risk driver
from the best-estimate path. Finally, the present value of all shocks
is added and multiplied by 9.

Let us consider an example. For ease of exposition assume
r = 0. Suppose there is a two-year product with a payoff e?+(2),
The best-estimate path is given by E,[e®V@)| W, (t) = 0] =
e3P’(2=9) for t = 0, 1, 2. A one-year 99.5% worst-case shock on
W, (t) is given by an increase in value to W, (t) + 2.58. Hence,
the Value-at-Risk in year t is approximated by applying the
one-year shock to the best-estimate path as e2°(2-1) (258> _ 1),
Finally, the CoC price for this two-year product would be calculated
as

2?2 4 §(e?” +1)(e2%80 — 1), (4.4)

If b = 50% and 6 = 6% then we calculate a price of 1.62.
A disadvantage of the “best-estimate path method” is that the
dynamics of the risk driver y(t) are completely ignored for the VaR
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calculation. If we move one year ahead in time, then the risk driver
will be at the value y(1), which will differ from the best estimate
value Eq[y(1)]. Hence, the CoC price of the product at time t = 1
is based on a different best-estimate path than the calculation at

t = 0. Therefore, the “best-estimate path method” used by the
industry is not time-consistent.

How can we obtain a time-consistent version of the CoC pricing
operator? One approach (similar to that taken for complete
markets in Section 3) to use a backward-induction method. In fact,
Jobert and Rogers (2008) prove that every time-consistent
valuation operator can be obtained by backward-induction of a
one-step pricing operator. Returning to the example, given the
payoff at T = 2, we can calculate the price at time 1 conditional
on the value of W, (1) as

ebe(1)+%b2 +5(eb(Wy(1)+2.58)+%b2 N be(1)+%b2)_

e

This expression can be simplified to
bW, (1)+1b? 2.58b
e (1+d(e 1)).

Given the price at time 1, which is now an explicit function of
W, (1), we can again calculate the CoC price at t = 0. This leads
to the formula

2”2 (14 §(e>% — 1))°. (4.5)
If we take again b = 50% and 6 = 6%, we find a price of 1.72.
When we compare the price (4.4) of the “best-estimate path”
method with the backward-induction price (4.5), then we
immediately see the effect of the best-estimate path
approximation. In (4.4) one adds the terms §(e*%8> — 1) and
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det* (€298 _ 1) to the price e2>°2. Whereas the
backward-induction method explicitly takes the “capital-on-capita
effect into account by multiplying the price e32°2 twice with the
factor (1 + &(e*%8P — 1)), the inclusion of the “capital-on-capital”

effect leads to a time-consistent pricing operator.

|II

4.2.2 Partial Differential Equation
As a final step in our argument, we change the length of the
time-step in the Cost-of-Capital pricing operator from one year to
At, and consider the limit for At — 0. Note that when
comparing Value-at-Risk quantities at different time-scales At,
these have to be scaled back to a per annum basis; this is done by
dividing the VaR term by? V/At. Then, consider that the
cost-of-capital o behaves like an interest rate: it is the
compensation the insurance company needs to pay to its
shareholders for borrowing the buffer capital over a certain period.
The cost-of-capital is expressed as a percentage per annum; hence,
over a time-step At the insurance company has to pay a
compensation of d At per € of buffer capital. This yields a “net
scaling” of 0At /At = §v/At.

For a single time-step At, this yields the following expression
for the CoC price:

g(t.y(t)) = e At ([Et[g(t + At y(t + At))]+

5\/EVaRq,t[g(t + At y(t + At))]) . (4.6)

3The scaling by v/ At is a result of using Brownian Motion to describe the
evolution of risk. More general stochastic process (such as Lévy processes) may
require different scaling factors, but this is beyond the scope of the current paper.
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With this pricing operator for a At-step we apply the
backward-induction method to determine the time-consistent CoC
price for a payoff g( T, y) at time T, and take the limit At — 0.

Note that for small At, the variance at time t of the process
g(t + At, y)is given by b?g? At. Furthermore, in a diffusion
setting, for small At, all risks are very close to a normal
distribution. Hence, the VaR at time t is closely approximated by k
times the standard deviation kb|gy|\/E, where the constant k is
given by the inverse cumulative normal distribution of the VaR
confidence level g (i.e. k = ®1(q)). Given that g(t + At, y)is
sufficiently smooth to be twice continuously differentiable in y, we
can then (similar to the manipulations in Section 3.5) substitute
the Taylor approximation of the function g(t + At, y) for the
binomial approximation (4.2) into (4.6), divide by At and take the
limit for At — 0, which yields* the following partial differential
equation (pde) for the price operator g(t, y):

&t + agy + %bzgyy + 5kb|gy| —rg=0. (4.7)

A comparison of the pricing equation (4.7) and the complete
market pricing equation (3.14) reveals two important differences.
First, note the additional term dkb|g, |. This is the “penalty term”
that the Cost-of-Capital method adds for writing the
non-hedgeable claim g( T, y). Second, it seems that we have not
changed the drift term a for the process y in the pricing equation.
But this is not entirely true. In fact, whenever the payoff g( T, y)
is monotonous in y( T), then the sign of g, is unique, and the two
terms depending on g, can be added together to obtain
(a £ 6kb) g, . Therefore, the CoC price g(t, y) can be

“For a more elaborate derivation, see Bayraktar and Young (2008) or Delong
(2011).
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represented with respect to the “risk-adjusted” process y:
dy = (a(t,y) + 6kb(t,y)) dt + b(t,y) dW,, (4.8)

where the sign of £k is determined by the sign of g,.. This allows
for a very nice interpretation of the pricing equation (4.7). When
pricing an non-hedgeable claim g( T, y), we adjust the
“best-estimate” drift of the process y in a “conservative” direction.
In other words, the drift is adjusted upwards or downwards by
dkb(t, y) depending on the sign of g,. Making the price more
conservative by adjusting the drift is a time-honoured actuarial
practice known as prudence.

Revisiting the example from Section 4.2.1, recall there was a
payoff of /() with r = 0, a = 0 .and b = 0.50. This payoff is
monotonically increasing in y and this claim can be priced by
adjusting the drift of y upward to dkb. Hence, we calculate a price
at time 0 of e(®kb+35%)2_|f we take § = 6%, k = 2.58 and
b = 0.50, then the price at time 0 is 1.50.

This section concludes by noting that that Cost-of-Capital
method suffers from a weakness: there is relatively little economic
justification for choosing the correct values of 6 and k. The report
CRO-Forum (2006) considers a wide variety of arguments that lead
to a wide range of possible parameter values. In the end, the
CRO-Forum recommends setting = 0.06 and
k = ®71(0.995) = 2.58, leading to a total factor of 6k = 0.15.

4.3 Good Deal Bound Pricing

A very different approach on pricing in incomplete markets was
introduced by Cochrane and Sad-Requejo (2000). It is based on the
following idea. Suppose you are offered the opportunity to enter
the following lottery: with a probability of % you get a payoff of
1000, or 1. The initial price of the lottery is 2. In terms of the
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theory developed in Section 3, this is not an arbitrage opportunity.
However, it does represent a “very good deal”. We get something
with an expected value of 500.50 for a price of 2. There is,
however, risk involved: the expected value is

%1000 + %1 = 500.50, and the standard deviation is

\/% (1000 — 500.50)2 + % * (1 — 500.50)% = 499.50. But
you have to be extremely risk-averse to bring the price you are
willing to pay from 500 down to below 2, in order to not
participate in this lottery.

The tools developed in Section 3 can be used to calculate the
price for this lottery by adjusting the probabilities of the outcomes.
In this example we have to solve’ for the adjusted probability g the
equation 2 = g % 1000 + (1 — g) = 1, which leads to g = 1/999
and (1 — g) = 998/999. Comparing the ratio between the
adjusted probabilities g and the original probabilities 2, like in
equation (3.11), we see that the ratio is extremely large—almost a
factor 2000 in this example. Hence, “extremely good deals” imply
very large probability ratios. Another way of looking at this is to
look at the factor A() that was introduced in (3.8), which is the
volatility of the deflator (). Section 3.4 established that the
deflator volatility A() can also be interpreted as the market price
of risk, if it was in a complete market. Hence, for “extremely good
deals” the market price of risk A(t, y) is very large.

This brings us to the idea of Good Deal Bounds. In an incomplete
market setting, we cannot trade in the underlying risk driver y.
Hence, we cannot calibrate the martingale measure to the prices
of traded assets. On the other hand, it is unrealistic to assume that
agents in the economy will leave “extremely good deals”

SFor ease of exposition we ignore the effect of discounting in this example.
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unexploited. Cochrane and Saa-Requejo (2000) introduced the
idea of putting an upper bound on the deflator volatility A() to
distinguish “normal deals” from “extremely good deals”.
Furthermore, Cochrane and Sad-Requejo (2000) proposed using
market prices of risk that we can observe for traded risks as a
benchmark for non-traded risks.

Suppose that we put an upper bound ~ on the deflator volatility.
This makes it possible to search for the upper and lower bounds on
the price for a derivative g( T, y) by considering all pricing
deflators with a volatility less than or equal to k. These upper and
lower bounds for the price represent the “ask” and “bid” prices for
an agent with good deal bound k.

This may all sound quite complicated, but it allows us to exploit
the structure between deflators, risk-neutral probabilities, and the
drift of the risk driver already explored in Section 3. Let us return
to the binomial discretisation (4.2) of the process y. By putting a
bound k on the deflator volatility, we infer from equation (3.11)
that we are considering adjusted probabilities in the range

g€ 11— nVAL),3(1+nVAL)]. (4.9)

But, changing the binomial probabilities is equivalent to changing
the drift of the process y. Hence, alternatively, we can also say
that we consider specifications for the stochastic process y where
the adjusted drift a*(t, y) is somewhere in the range

a*(t.y) € [a(t,y) — xb(t,y), a(t, y) + kb(t,y)]. (4.10)

Using the derivation from Section 3.5, we infer that any price of a
derivative g(t, y) that falls within the Good Deal Bounds is
described by the partial differential equation (pde)

g+ a‘g, +3b°g, —rg =0, (4.12)
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where a* is taken from the interval (4.10).

When seeking the highest and lowest prices that are “on the
edge” of the good deal bound interval, we have to find the drift a*
that minimises or maximises the price g(t, y) for each time-step.
For example, when we want to maximise the price g(t, y), then
we should either put a* at the upper bound a(t, y) + xb(t, y)
whenever g, (t, y) > 0 or put a* at the lower bound
a(t,y) — rkb(t, y) whenever g, (t, y) < 0. Therefore, we can
represent the good deal bound price g(t, y) with respect to the
“risk-adjusted” process y:

dy = (a(t,y) £ kb(t,y)) dt + b(t, y) dW,, (4.12)

where the sign of £« is determined the sign of g,,.

Note that the structure of the risk-adjusted process (4.12) is
exactly the same as the structure of the Cost-of-Capital pricing
process (4.8), provided we take k = dk.

On the other hand, given that we have the interpretation of k as
an upper bound for the deflator volatility, which in traded markets
is equal to the market price of risk, this information can be used to
get more guidance on setting k. Considering equity markets , then
we can calculate the market price of risk. For typical equity markets
(see e.g. Dimson et al. (2002)) we see an excess return above the
risk-free rate of around 4%, and a volatility of around 16%,
leading to a market price of risk of approximately 4/16 = 0.25.
From this calculation we infer that the upper bound « should be
larger than 0.25. Note that in this light the value 6k = 0.15
implied by the Cost-of-Capital method seems to be on the low side.

4.4 Model Ambiguity & Robustness
This subsection introduces a third perspective for pricing contracts
in incomplete markets. This is the notion of Model Ambiguity. This
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means that we explicitly take into consideration that the
mathematical models we use to describe the world are not exact,
but may be misspecified.

Model ambiguity can be illustrated as follows. Suppose we try to
estimate the expected return of investing in an equity index (say,
the Standard & Poor’s (S&P) index). Historical observations can
then be used to estimate the expected return, but the estimate of
the expected return will then be subject to estimation error. It
turns out that since equity returns are relatively volatile, it is very
difficult to obtain an accurate estimate for the expected return.
Assume that the volatility of the S&P index is around 16%, and that
we use 25 years of data. Then the standard error for the estimate
of the expected return is 16%/v/25 = 3.2%. Suppose that the
estimate of the expected return is 8%; then the 95% confidence
interval for this estimate is
[8% — 1.96 % 3.2%, 8% + 1.96 * 3.2%] = [1.7%, 14%]. Even if
we would use 100 years of historical data, our 95% confidence
interval is still [4.9%, 11%)]. Using more years of historical data
will give us a more accurate answer only, if the data-generating
process has remained the same during the entire period. It is
highly questionable whether the economy of 100 years ago is
representative of today’s economy. Thus, it is clearly very difficult
to obtain an accurate estimate of something as simple as the
expected return of an equity index. The same observation is also
true for the expected increase in human longevity: actuaries have
been constantly revising their projections about forecasts of
human longevity in the last 20 years.

Suppose we accept the impossibility of accurately “knowing”
the correct model specification. How can we deal with this model
ambiguity? One approach is to assume that economic agents are
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concerned about making bad decisions based on misspecified
models. To deal with this problem, assume that agents resort to
robust optimisation methods. This means that agents try to make
their decisions in such a way that they explicitly incorporate the
fact that the “true” model of Mother Nature may deviate from the
mathematical model used by the agent for decision making. The
notion of model ambiguity and robust optimisation in economics
has been made popular in recent years by Hansen and Sargent
(see, for example, their book Robustness, Hansen and Sargent
(2007)).

How can the notion of robust optimisation be implemented in
our setting? We start by making some strong simplifying
assumptions. First, assume that the true model for the process
y(t) is of the form (4.1). The only uncertainty that we have
concerns the correct specification of the drift term a(t, y). Hence,
we assume that we know the correct specification of the diffusion
term b(t, y). These are, of course, very strong assumptions
indeed, but given the difficulties in estimating even a “simple”
parameter as the expected return, this seems like a good starting
point.®

Second, assume that the agent is able to specify a confidence
interval of “reasonable” values for the drift a*(¢, y). We will
return later to the question of how to specify a confidence interval
of reasonable values. In the one-dimensional case being
considered in this section, a confidence interval for the drift has
the form a*(t, y) € [aL, an]. Another way of representing a
confidence interval is to say we have a point estimate a(t, y) that
is located in the centre of the confidence interval, and a width of

5For a more elaborate justification of considering only uncertainty in the drift,
see Hansen and Sargent (2007, Chapter 1).
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the confidence interval given by 21 times the standard deviation
b(t, y) of the process y(t). This leads to the representation

a*(t,y) €la(t,y) — vb(t,y), a(t,y) + vb(t,y)]. (4.13)

Note that this confidence interval is of exactly the same form as
the good deal bound equation (4.10). However, the parameter v
now has the interpretation as being the width of the confidence
interval for a*(t, y).

In this setup we can achieve a robust notion of pricing a
derivative g( T, y) by calculating the expectation of g( T, y)
under the “worst” model specification for the non-hedgeable
process y. In particular, for an insurance company that has written
the claim g( T, y) payable at time T, the “worst” model
specification is that choice for the drift a*(t, y) in the
interval (4.13) that maximises the value of the expectation. Using
exactly the same argumentation as in Section 4.3, we find that the
robust price g(t, y) can be represented by taking the expectation
with respect to the “worst case” process y:

dy = (a(t, y) £+ vb(t, y)) dt + b(t,y) dW,, (4.14)

where the sign of -1 is determined the sign of g, .

Given our interpretation of v as the width of the confidence
interval, how can we determine v? In other words: how can we
establish an interval of “reasonable” values for a*(t, y)? We can
offer two (closely related) arguments. The first argument is that
historical data can be used to estimate the parameter a. The
confidence interval from the parameter estimate the becomes the
measure for the interval of “reasonable” values for a*. Using a 95%
confidence interval based on 25 years of historical data yields
V= 1.96/@ = 0.39. For 50 years of historical data we obtain
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v = 1.96/+/50 = 0.28. The second argument is to consider the
question: which alternative model specifications are statistically
indistinguishable from our current model, given the available data?
The answer (in the case of uncertainty in the mean) is given by all
values for the drift a that are in the 95% confidence interval (4.13).

Comparing the values for v of 0.39 or 0.28 to the lower bound
of 0.25 found for x reveals these values are nicely in agreement
with each other. Furthermore, we arrive (once again) at the
conclusion that the value k = 0.15 used by the insurance
industry is on the low side.

4.5 A New Value of the Cost-of-Capital

To summarise our discussion on the Cost-of-Capital: the
conclusions drawn both in Section 4.3 and in the previous section
indicate that the CoC parameter k = 0.15 currently used by the
insurance industry seems too low.

A value of 6k = 0.30 seems much more appropriate when this
is compared to the values implied by the Good Deal Bound and the
Model Ambiguity methods. Setting 0k = 0.30 and using
k = ®71(0.995) = 2.58 implies a cost-of-capital parameter
0 = 12%, which is basically doubling the current value of 6%
proposed by the insurance industry.

Setting v = 0.30 in the Model Ambiguity method, this
corresponds to using (1.96,/0.30)? = 43 years of historical data
to estimate the mean of the process y(t). This also seems a
reasonable tradeoff between using as much historical data as
possible, without going back so far in time that it becomes hard to
believe that the data is still representative for today’s economy.
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4.6 Alternative Approaches
This section presents various alternative approaches to the theory
developed in this paper so far.

4.6.1 Variance Pricing & Utility Indifference Pricing

A large body of literature focuses on utility indifference pricing.
The roots can be traced back to Hodges and Neuberger (1989). The
idea is that the assumption is made that the behaviour of agents
can be described by a utility function, then a utility indifference
price for accepting an (non-hedgeable) claim can be found. For
exponential utility functions, quite explicit results can be found
(see Zariphopoulou (2001); Young and Zariphopoulou (2002);
Musiela and Zariphopoulou (2004); Hugonnier et al. (2005); Hu
et al. (2005); Musiela and Zariphopoulou (2009b); Henderson
(2002, 2005) and Henderson and Hobson (2009)). Also for power
utility functions, partial results are known, see Hobson (2004);
Monoyios (2006). For a general overview, see the book
Indifference Pricing by Carmona (2009).

A big disadvantage of utility-based pricing is that it depends on
the specification of the utility function at a specific horizon T. This
introduces an artificial dependency in the pricing on the horizon T.
Attempts to resolve this issue were proposed by Henderson and
Hobson (2007) and Musiela and Zariphopoulou (2007, 2009a).

4.6.2 Strong Time-Consistency

Our derivations have used conditional expectations that are
sequentially evaluated using backward-induction arguments. This
leads to the pricing pde’s we have found in equation (4.11). Use of
backward-induction techniques allows us to construct pricing
methods that are strongly time-consistent; see Hardy and Wirch
(2005) and Jobert and Rogers (2008). However, the concept of
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strong time-consistency for pricing methods is not uncontroversial.
See Roorda et al. (2005); Roorda and Schumacher (2007) for a
discussion.

4.6.3 Bayesian Approach

Finally, note that as an alternative to robust optimisation, it is
possible to use Bayesian methods. In the Bayesian approach the
uncertainty about the model specification is specified in the form
of prior and posterior probability distributions on the parameter
space. Portfolio optimisation and pricing is then carried out by
“averaging” over the parameter space (i.e. averaging over the
different alternative model specifications). For a discussion and
examples, see Lutgens (2004); Lutgens and Schotman (2010).

4.7 Literature Overview

As mentioned in the text, the Cost-of-Capital (CoC) approach was
originally proposed by the insurance industry (see CRO-Forum
(2006)), based on ideas put forward by the Swiss insurance
supervisor in the so-called Swiss Solvency Test (SST) (see Keller and
Luder (2004)). For a critical discussion on the risk measure implied
by the SST see Filipovic and Vogelpoth (2008). The CoC method
was adopted by the European Union as the standard method for
the calculations in the Quantitative Impact Studies of the

Solvency Il process; see CEIOPS (2008); EIOPA (2010).

Good Deal Bound pricing has been introduced by Cochrane and
Saa-Requejo (2000). Their basic ideas were extended by Cerny and
Hodges (2002), Becherer (2009), Bjork and Slinko (2006)
andKl6ppel and Schweizer (2007b). The connections between
Good Deal Bound pricing and the numéraire portfolio (which we
have called the stochastic discount factor, see eq. (3.8)) have been
explored by Becherer (2001, 2009), Karatzas and Kardaras (2007),
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Christensen and Larsen (2007) and Delong (2011).

Jaschke and Kiichler (2001) highlighted the connections
between Good Deal Bound pricing and the rich theory of coherent
risk measures. Coherent risk measures were introduced by Artzner
et al. (1999, 2007). Later, this has been extended to the more
general class of convex risk measures by Follmer and Schied (2002)
and Cheridito et al. (2005). The connection between convex risk
measures and pricing can be found in Cvitani¢ and Karatzas (1999),
Carr et al. (2001), Frittelli and Rosazza Gianin (2002), Detlefsen and
Scandolo (2005), KI6ppel and Schweizer (2007a), Stadje (2010),
Delbaen et al. (2010), and the papers by Cherny (2007, 2009,
2010). In the actuarial literature, see Denuit et al. (2006) and
Goovaerts and Laeven (2008).

Model Ambiguity and robustness were made popular in
economics by Hansen and Scheinkman (1995), Hansen and Sargent
(2001), Cagetti et al. (2002), Cont (2006), Hansen et al. (2006) and
Hansen and Sargent (2007). However, ideas for robustness in
statistics are much older, and date at least back to Huber (1981)
(for a new edition, see Huber and Ronchetti, 2009). Also, several
authors have applied robustness ideas to portfolio optimisation;
see Kirch (2002), Goldfarb and lyengar (2003), Maenhout (2004),
Coleman et al. (2007), Gundel and Weber (2007), Rogers (2009),
Follmer et al. (2009), lyengar and Ma (2010) and Kerkhof et al.
(2010). Another branch of literature studies the notion of model
ambiguity on decisions that economic agents make; see Duffie and
Epstein (1992a), Duffie and Epstein (1992b), Chen and Epstein
(2002), Maccheroni et al. (2006), Epstein and Schneider (2008) and
Riedel (2009).
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5. Combining Hedgeable and Non-Hedgeable Risk

This section pushes our analysis one step further. We investigate
an environment in which we have both a financial risk process
x(t) that can traded and hedged in a market, and also an
non-hedgeable insurance risk process y(t). Basically, this section
seeks to combine the results from Sections 3 and 4.

5.1 Model Ambiguity and Hedging
The process for the financial risk x(t) is given in equation (3.1) and
the process for the non-hedgeable risk y(t) is given in (4.1).
Similar to the setup in Section 4, an agent is considered that is
uncertain about the true value of the drift parameters m and a of
the financial and the insurance processes, respectively. Assume
that the agent faces no uncertainty about the diffusion coefficients
o, b and the correlation parameter p between the the Brownian
Motions W, and W,,.

To help us describe the uncertainty set, we introduce some
further notation. The vector of drift rates 1, and the covariance
matrix 2 are defined as follows

_(m [ * pob
M'_(a)’ Z'_(pab b2)' (5.1)

We now make the assumption that the joint uncertainty in the drift
rates is described by the following set:

K= {uo+e|rte <k (5.2)

The specification of the uncertainty in this form is motivated (like
in Section 4.4) by the fact that the economic agent can use
econometric estimation techniques to estimate the drift rates. The
estimation leads to the point estimate j,o. However, there is
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uncertainty surrounding this estimate. This uncertainty typically is
proportional to the covariance matrix 2. In other words, the agent
assumes that the true values of the drift parameters lie
somewhere within the confidence interval given by the set K. In
the one-dimensional case we considered in Section 4.4, the
uncertainty set K for the drift rate a simplifies to

a € [agp — kb, ap + kb].

We want to investigate what price the agent will attribute to a
derivative that depends both on financial and insurance risk and
has payoff g(t + At, x, y) at time t + At. We furthermore
assume (like in Section 3.2) that the agent can hedge the financial
risk by investing an amount D; in the risky asset x at time ¢, but
cannot trade in the insurance asset y. Hence, the robust rational
agent solves the following optimisation problem for each time-step
[t, t + At]:

mDatX ng'tn e_rAt[E[tEt] [g(t + At,Xt+At,}/t+At) - DtXt—i-At}

st /Y le < k2,

(5.3)
where Elt] [] denotes taking the expectation using the drift term
o + € for the processes x and y.

This “maxmin” optimisation problem can be interpreted as a
two-player game. First, the agent chooses an amount D; to invest
in x, and then Mother Nature chooses the worst possible
perturbation €, of the drift 1. But the agent is aware of the bad
intentions of Mother Nature, and therefore chooses the amount
D, that maximises the minimal outcome of Mother Nature.

The optimal solution for D; is given by

D:::_< b)+ A by1—p?

02
e R e v R gyl (5.4)
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where X is the market price of risk defined in equation (3.7).

Several interesting things about this solution are noteworthy.
First, the solution D; is only well-defined for \> < k2. This
corresponds exactly to the condition encountered in Section 4.3:
that the good deal bound & should be larger than the market price
of risk for the financial market. Stated differently, if the agent is
confident that even in the worst case a positive excess return can
be made by investing in the financial market (i.e. when \? > k2),
then the agent will try to invest a massive amount in the financial
market and has a confident expectation of getting very rich.

The second interesting thing to note is that the optimal hedge
position consists of two parts: the hedge portfolio —(f, + pgﬂ,)
and a “speculative” portfolio that is determined by the product of
the residual non-hedgeable risk by/1 — p2/o f, and the “market
confidence factor” \/v/k? — A\2. The market confidence factor
shoots to infinity if A approaches k. For small values of ), the
market confidence factor is approximately equal to A/ k, and the
speculative investment is then approximately proportional to the
market price of risk scaled down by a factor of k.

5.2 Agent’s Valuation

If we substitute for each time-step [t, t + At] the optimal
solutions for (Dy, £7) into (5.3), and then take the limit for

At — 0 (as we did in Section 3.5), we find a partial differential
equation for the price g(t, x, y):

g+ rgc+a‘g, +10°gw + pobgy + 1b°g,, —rg =0, (5.5)

where the drift term a* for the insurance process is given by

a* = ap — pAb £ by/(1 — p?)(k2 — \2), (5.6)
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where the sign of the last term depends on the sign of g,,.
Although the expressions for a* may look a bit complicated, some
very nice interpretations can be given for the expressions.

The first interpretation for a* is an economic interpretation.
Recall that the formula for the optimal hedge given in
equation (5.4) consists of two parts: a hedge portfolio and a
“speculative” portfolio that depends on \. Suppose that the agent
would only choose the hedge portfolio D, := —(f, + pb/cf,).
Substitutign D; into (5.3) yields an expression very similar to (5.5),
except that the drift term for the insurance process would be given
by a = ag — pAb + kb\/1 — p?. Therefore, by including the
speculative portfolio into the optimal hedge, the agent can finance
part of uncertainty in a* by exploiting the expected excess return
on equities. This then results in the optimal drift term a*, where
the residual non-hedgeable insurance risk kb\/1 — p? is shrunk
by an additional factor v k2 — 2.

Note also the downward adjustment of the drift of the
non-traded asset y by the term —pb\. This downward adjustment
compensates exactly the excess return of y due to the correlation
p with the traded asset x. This effect makes sense if we think in
terms of the Capital Asset Pricing Model (CAPM). In the CAPM, the
expected return of any asset is given by the formula
Eldy(t)] = (r + 8(m — r))dt, where 3 s given by the formula
3 := pbao /2. Combining the expression for 3 with the definition
of the market price of risk A given in (3.7) yields
E[dy(t)] = (r + pbX)dt. Hence, the drift term a* in the agent’s
valuation adjusts the drift in two steps: the first step —pAb
corrects the drift of y for the excess return injected by the
correlation with the traded asset, and the second term
b/ (1 — p?)(k? — \2) adjusts the drift of y for the
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non-hedgeable risks.

The second interpretation of equation (5.6) is a geometric
interpretation. Recall that the uncertainty set /C is an ellipsoid
centred around 1io. Because the financial component x of the risk
vector is perfectly replicated, this means that the uncertainty
regarding the mean of the financial risk is eliminated, and is
replaced by the risk-free return r. The uncertainty for the mean of
the insurance process y is now confined to the intersection of
uncertainty set C and the line m = r. The intersection of a line
and an ellipsoid has two solutions: exactly the two solutions given
in equation (5.6).”

This geometric interpretation is illustrated in Figure 1, using the
following parameters: mg = {4%, 7%, 10%}, r = 4%, ap =
0,0 =0.15,b=1,p = 0.75and k = 2//25 = 0.4. The three
different values of mg lead to A = {0, 0.2, 0.4}, and these three
cases are illustrated in the sub-figures 1(a), 1(b) and 1(c). The
uncertainty set /C is given by the interior of the ellipse, and the
point estimate i is given by the point in the centre. The line
m = r is the vertical dotted line, and the intersection with the
ellipse gives the two solutions for a*. Figure 1(a) illustrates the
case A = 0. In this case, a* = ag £ kby/1 — p?, which is the
“naive” confidence interval for a equal to the point estimate ag
plus/minus k times the non-hedgeable insurance risk by/1 — p2.
The other sub-figures illustrate that for larger values of )\, the
ellipse moves to the right. This is a reflection of the fact that higher
values of \ correspond to higher point estimates of mg. When the

"Note that this geometric interpretation is equivalent to the result found in
Barrieu and El Karoui (2005), where the pricing measure is characterised as the
“inf-convolution” of the set of test measures (in our case, the ellipsoid) and the
set of martingale measures (in our case, the line m = r).
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ellipse moves to the right, the points a* move down (due to the
correlation term —pAb), and the points move closer together (due
to the factor v/ k2 — \2). Figure 1(c) illustrates the largest allowed
value for \. For larger values of )\, the ellipse no longer intersects
the line m = r, and the optimisation (5.3) no longer has a finite
solution.

5.3 On the choice of k

This section concludes by elaborating on the choice of k. In the
one-dimensional case treated in Section 4.5 we took

k = 1.96/\/4—3 = 0.30. This choice was motivated by
considering the 95% confidence interval for the estimate of the
mean of the process y(t) using 43 years of historical data.

In the two-dimensional case we considered in this section, we
have to modify this argument slightly. If we used 43 years of data
to estimate the vector 1« = (m, a)’, then the confidence interval
for 1 is given by the set IC defined in equation (5.2). The set IC
describes a 95% confidence interval if we take k2 equal to the 95%
critical value of a y2-distribution with 2 degrees of freedom,
divided by the number of observations. This value is given by
k? =5.99/43 = 0.139, which leads to the value k = 0.37.

For the one-dimensional case, we would take the 95% critical
value of a X2-distribution with 1 degree of freedom, divided by 43,
which leads to k = /3.84/43 = 0.30, which is the same value
that was derived in Section 4.5.
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6. Applications

This section uses several examples to illustrate the concepts
developed in this paper.

6.1 Pricing Long-Dated Cash Flows
As mentioned in the introduction, the pricing of very long-dated
cash flows is an important problem for insurance companies and
pension funds. This section illustrates the application of the pricing
approach outlined in this paper to this problem.

We start by assuming that the interest rates are stochastic, and
can be described by a Vasicek (1977) model. In this model we take
the instantaneous short rate r(t) and model it as

dr = a(@—r)dt—i—adW,. (6.1)

In this equation, @ is the long-term average of the interest rates,
and a is the speed of mean reversion.

When pricing cash flows, we have to distinguish two cases. For
maturities up to 30 years, there are bonds traded in financial
markets, and the market is complete. This means that a portfolio
of cash flows is priced at the same price as the value of a
replicating portfolio of bonds that matches the cash-flow pattern.
This price can also be calculated by discounting the cash flows at
the zero-curve implied by the market.

For cash flows beyond 30 years, there are no bonds available,
which leads us in an incomplete market situation. This calls for
application of the methods outlined in Section 4 to determine the
value of the cash flows.

For pricing short cash flows (i.e. cash flows promised to
policyholders), we have to adjust the interest rates downwards.
Applying the methodologies of Section 4 to the interest rate
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Figure 2: Extrapolated term-structure of interest rates

dynamics (6.1), we get

dr = a (0 — k2 —r) dt + o dW,, (6.2)

a

where we set k = 0.30. This formula implies that a zero rate with
maturity 7 > 30 has to be adjusted up or down (for long or short
cash flows, respectively) by the formula

ko 1— e—a(T—30)

Assume that the long-term nominal interest rate is 4% (for
example, composed of 2% inflation plus 2% real interest rates). If it
is also assumed that a = 0.05 and o = 0.01, then it is possible to
explicitly calculate the extension of the zero-curve beyond the
30-year point using formula (6.3). This is illustrated in Figure 2. The
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left part of the curve between year 0 and 30 shows a market-curve
that is flat at 4%. Beyond year 30 we extrapolate the curve using
the up and down adjustment to the zero-rates given by
equation (6.3). The bottom line shows the extrapolation of the
curve for short cash flows (i.e. cash flows promised to
policyholders). The upper line shows the extrapolation of the
curve for long cash flows (i.e. cash flows to be received from
policyholders). The figure reveals, for long maturities the
incompleteness of the market becomes more and more
pronounced in the extrapolated discount rates.

For further examples, see Cairns (2000), De Jong (2008a) and
lyengar and Ma (2010).

6.2 Pricing Longevity Risk

At the moment there is no well-developed market for longevity
risk. Hence, it is reasonable (for the time being) to make the
assumption that longevity cannot be hedged, which implies that
we have to rely on the methods outlined in Section 4 for pricing
longevity (and/or mortality) risk.

To provide a feel for the size of the numbers, this section focuses
on one particular summary statistic: the life expectancy at birth of
Dutch males. Figure 3 plots the historical development of the life
expectancy at birth between 1950 and 2006, based on data
downloaded from the Human Mortality Database (see
www.mortality.org). Two things are immediately obvious
from this graph: first, life expectancy has significantly increased in
the past 50 years: from 70 years in 1950 to nearly 78 years in 2006.
Second, the different trends are clear: between 1950 and 1960, life
expectancy was increasing; then from 1960 until 1970, life
expectancy was decreasing; since 1970, life expectancy has seen a
steady increase. It is exactly these “trend breaks” that make
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Figure 3: Life Expectancy at Birth for Dutch Males

forecasting of human mortality so difficult.

Based on almost 60 years of data, an average increase in life
expectancy of 1.6 months per years is estimated, and a standard
deviation of 3.2 months per year. The Dutch Actuarial Association
has recently published new life tables, identifying a trend of 1.8
months increase in life expectancy for Dutch males per year, which
is very close to the number found here.

However, when we want to price a portfolio of contracts where
we worry about people living longer (as is typical for life insurance
and pension portfolios). Using the methods outlined in Section 4,
we should (for pricing purposes) therefore adjust the trend
upwards (in the more conservative direction) by 0.30 standard
deviation, leading to a “prudent” trend of 1.6+0.30%3.2 = 2.6
months per year increase in life expectancy. The “prudent” up and
down trends are also illustrated in Figure 3 for the period from
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2010 until 2060.

For further examples, see Wang et al. (1997), Young and
Zariphopoulou (2002), Young (2004b), Milevsky et al. (2006),
Bayraktar and Young (2007), Milevsky and Young (2007), Bayraktar
and Young (2008), Hari et al. (2008), Ludkovski and Young (2008),
Young (2008) and Bayraktar et al. (2009).

6.3 Pricing Non-Hedgeable Equity Risk

The final example examines the pricing of equity risk. A typical
market-consistent setting assumes that equities can be freely
traded in financial markets, and that equity risk is fully hedgeable.
This means that equity risk is priced using the risk-neutral methods
outlined in Section 3.

However, in the case of very large pension funds this
assumption is questionable. If very large pension funds would buy
or sell very large equity positions, they would move the market
prices. Hence, large pension funds are not “price takers”, but can
move the market. In particular, in times of crisis, large pension
funds could push the market down even further if they would try
to sell equities in response to the drop in prices. Fortunately, this
has not happened during the last two crises, thanks to adequate
“relaxation” of the underfunding rules by the Dutch Central Bank.

If we take the fact that large pension funds cannot trade without
moving the market to the extreme that large pension funds cannot
trade at all, then we have again an incomplete market situation,
and equity exposures should be priced using the methods of
Section 4.

Another example of “equity incompleteness” is the case of
insurance companies that give profit-sharing to their policyholders
based on the performance of their own investment portfolio. In
the traditional approach, such as that of Grosen and Jorgensen
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Figure 4: Cumulative Return in Standard and Poor’s Stock Index

(2000), such profit-sharing options are priced with the risk-neutral
methods of Section 3. However, there is a problem: risk-neutral
pricing is based on the cost of the replicating portfolio of the
contract. But in the case of profit-sharing on your own portfolio, it
is impossible to hedge: at the moment you start buying
instruments to hedge your own profit-sharing options, you start
changing the composition of your asset portfolio, which then starts
changing the nature of the profit-sharing. One approach to solve
this problem was suggested by Kleinow (2009), where one tries to
find the investment portfolio with profit-sharing that is
“self-hedging”. The solution to this approach is that the only
portfolios that are “self-hedging” are those that have no
investment risk (and thus have perfectly predictable
profit-sharing). Although mathematically correct, this outcome
does not reflect the behaviour of insurance companies in reality.
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An alternative approach would be to assume that these
profit-sharing options are “non-hedgeable” and should be valued
using the methods of Section 4.

What kind of pricing do we get for the “non-hedgeable equity”
approach? Figure 4 plots the cumulative return of the S&P equity
index between 1950 and 2009. The average return over this period
is 10.4% with a standard deviation of 16.9%. When we need to
price an non-hedgeable equity position as an asset or as a written
put-option, we adjust the return down by 0.30 standard deviation
to 5.33%. This higher level of conservatism reflects the additional
risk associated with holding an non-hedgeable position.

For further examples, see Davis (1997, 2006) and De Jong
(2008b).
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SUMMARY OF THE DISCUSSION

By Marc de Graaf

Pricing in Incomplete Markets
By Antoon Pelsser (Maastricht University)
Discussants: Hans Schumacher (1st) and Dirk Broeders (2nd)

Hans Schumacher summarized the contribution by stating

that the paper argues that three methods of computing prices
in incomplete markets are mathematically equivalent. The
liability is modeled in continuous time, and expectation is
taken after modifying the drift by x times the volatility in the
adverse direction. Forx, the value 0.5 is suggested. This specific
recommendation cuts through the academic discussion and
provides a clear starting point.

Schumachers main comments focused on the purpose of
pricing, the efficient boundary, the linearity assumption of
the price, the 6% rule, the scaling, and the type of analysis.
Schumacher mentioned that the purpose of price computations
could be price setting, incremental market value computations,
or determining the value of liabilities for regulatory purposes. He
presumed that Pelssers paper is primarily focused on the last of
these. This was confirmed by Pelsser.

The discussant continued by pointing out that regulation is
used to prevent accidents from happening, without constraining
activity too much. The 'right’ balance presumably is a political
decision, so that the contribution of science is perhaps just the
provision of a suitable parameterization of the efficient boundary.
From this perspective, the question is not: what is the right value
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of k? But rather: do we trace out the efficient boundary by letting x
vary?

The pricing equation in the paper is nonlinear, so thatin
general the computed value of a portfolio of two liabilities is
not equal to the sum of the computed values of the liabilties
separately. To get a linear pricing equation, the correction
to the drift should take place through a covariance (with the
kernel process) rather than through a standard deviation. Such
a correction would lead to an extra charge for liabilities that
are large during bad economic times (and a reduced charge for
liabilities that are small during bad economic times). Pelsser
argued that nonlinearity is implicitly included in section 5. Here
the phi's can turn negative if losses turn large. Schumacher
suggested that this argument takes the covariance into account.
Pelsser agreed, but explained that the mathematics in the paper
had to be reduced, according to the editorial board.

The 6% rule for the cost of capital has acquired the status of a
standard, but the origin is not very clear. When considering the
value of 6%, the resulting Sharpe ratio is smaller than the typical
Sharpe ratios found in equity markets. Does this mean that the
market is more conservative than the regulator? Schumacher
found it to be an interesting question, but asserted that it might
be important to take into account that an investment decision is
not the same as a regulatory decision.

The scaling of VaR by the square root of dt does not reflect a
general property of stochastic processes. Presumably the scaling
law could be justified at least for small dt's under suitable
assumptions (i.e. jumps are not allowed).

Finally, Schumacher noted that the approach followed by
Pelsser is closer to the actuarial tradition than to the standard
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literature on finance. The analysis focuses on a single risk and
does not incorporate a pricing kernel.

The second discussant, Dirk Broeders, emphasized the relevance
of this paper. Pension assets and liabilities stretch far into the
future. Broeders found, however, that the paper neglects the
derivative markets, which also offer prices beyond 30 years from
now. Is the derivative market considered not to be a real market?
Broeders also argued that if pension funds are price setters, then
they can use the methodology in this paper, but then hedging
would no longer be useful. Furthermore, Broeders illustrated that
the techniques proposed in this paper have a significant impact.
For example applying example 6.1 from the paper to pension
funds results in a decrease in the funding ratio of 10 percentage
points. He also suggested that Pelsser could discuss the proposals
under Solvency 2 (SII) of an ultimate forward rate and an illiquidity
premium.

Pelsser argued that in SIl a normal distribution is assumed. This
assumption has a problematic implication, which is that multiple
worst-case scenarios will not happen at the same time. However,
it appears that when there is an economic crisis, everything
goes bad (and the worst-case scenarios do occur jointly at the
same time). This is where the SlI falls apart, and gives 40% of
diversification benefits away for free.

Broeders argued that, to some extent, model risk is already
taken into account in supervision, and that in the future partial
internal models are being considered to buffer for specific risk
factors.

Broeders wrapped up his comments by summarizing the key
point of the paper; namely, that for unhedgeable risks a prudent
approach is advocated. Pelsser replied that, to some extent, he
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is 'pricing the impossible’. However, as soon as more prices are
available, the model adapts to it. Broeders stated that Pelsser kept
the market price of risk constant, but that it does react over time.
When averaging, one could deal with the cyclical behavior of the
market (this was a question from the public). Numerically, one
could implement the crisis effect on the willingness to take risk
(which is smaller just after a crisis occurred).
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Pricing in incomplete markets

This Netspar Panel Paper by Antoon Pelsser (Maastricht
University) discusses the pricing of contracts in an
incomplete market setting. For life insurance companies
and pension funds, it is always the case in practice that not
all of the risks in their books can be hedged. Hence, the
standard Black-Scholes methodology cannot be applied in
this situation. The paper discusses and compares several
methods that have been proposed in the literature in recent
years: the Cost-of-Capital method (the current industry
standard), Good Deal Bound pricing, and pricing under
Model Ambiguity.





