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Motivation

◮ Financial time series are often inherently non-stable: the
model’s parameters vary over time

◮ Financial time series may be continuous and/or discrete
and be observed at different frequencies and share
common (dynamic) features

◮ It is often difficult to find the observable variables for
these shared features: shared dynamics may be due to
unobserved components

◮ Conceptual and computational challenges are large: can
we make a step forward?
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Motivation (ctd)

3



Motivation (ctd)
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Contributions

◮ We introduce a new, general, computationally
straightforward econometric framework to model time
variation in parameters

◮ The framework is easily applied to complex models
involving time-varying higher order moments for series
with different distributions and different frequencies:

◮ Modeling dynamic volatilities and correlations under
skewness and fat tails

◮ Modeling dynamic portfolio credit risk

◮ The framework is easily exploited for forecasting and risk
analysis

◮ The framework gives rise to new models

◮ The framework has comparable performance to its
(computationally involved) state-space counterparts
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Time varying parameter models

Consider a sequence of observations y1, . . . , yT with density

yt ∼ p(yt |F
t ,Y t−1, ψ),

which depends on a vector of time varying parameters ft . These evolve
through time as a linear process

ft+1 = ω + Bft + Ast .

◮ Y t = {y1, . . . , yt}, F
t = {f1, . . . , ft}.

◮ ft contains all time varying parameters in observation density.

◮ ψ contains parameters in ω, A, B and “fixed” coefficients.

◮ st is the “driving” mechanism.

◮ Exogenous variables (covariates) can also be included.
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Time varying parameter models

yt ∼ p(yt |F
t ,Y t−1, ψ),

ft+1 = ω + Bft + Ast ,

Two options for dealing with st (Cox, 1981):

◮ let st be an i.i.d. random sequence ⇒ parameter driven

◮ st is a deterministic function of Y t ⇒ observation driven

In case of an “observation driven” approach, what is an appropriate

function g(·) in st = g(Y t) ?
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Time varying parameter models
In our work, we build observation driven models

yt ∼ p(yt |F
t ,Y t−1;ψ),

ft+1 = ω + Bft + Ast ,

where the evolution of the factors are determined by the scaled score

st = St · ∇t ,

∇t =
∂ ln p(yt |F

t ,Y t−1;ψ)

∂ft
,

St = S(t,Y t ;ψ).

◮ st is a m.d.s. which acts as a natural sequence of innovations.

◮ Creal, Koopman, Lucas (2008) propose this class of models and
label them Generalized Autoregressive Score (GAS) models.

◮ Different choices for St : Fisher info. matrix, identity matrix,....
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Example # 1: GARCH

Consider model yt ∼ N (0, σ2
t ):

yt = σtεt εt ∼ N (0, 1)

Let ft = σ2
t . The score and inverse of the information matrix are:

∇t =
1

2f 2t
y2
t −

1

2ft
,

St = I−1
t−1 = 2f 2t .

The GAS(1, 1) recursion reduces to the GARCH(1, 1) model:

ft+1 = ω + A1(y
2
t − ft) + B1ft

(A1 = α and B1 = α+ β from standard GARCH parameterization)
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Example # 2: E-ACD

Consider an exponential (E) model,

yt = λtεt , εt ∼ E(1).

Let ft = λt . The score and inverse of the information matrix are:

∇t =
yt

f 2t
−

1

ft
,

St = I−1
t−1 = f 2t .

The GAS(1, 1) recursion reduces to:

ft+1 = ω + A1(yt − ft) + B1ft

E-ACD(1, 1) model of Engle Russell (1998)
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Special cases of this idea

◮ GARCH with normal dist.: Engle (1982), Bollerslev (1986)

◮ Exponential dist. (E-ACD and ACI): Engle & Russell (1998) and
Russell (2001), respectively

◮ Gamma dist. (MEM): Engle (2002), Engle & Gallo (2006)

◮ Poisson dist.: Davis, Dunsmuir & Street (2003)

◮ Multinomial dist. (ACM): Russell & Engle (2005)

◮ Binomial dist.: Cox (1956), Rydberg & Shephard (2002)

◮ Vola and correl under Student’s t dist. (Creal, Koopman, Lucas,
2011) or GH distributions (Zhang, Creal, Koopman, Lucas, 2011)

◮ Beta and ordered logit dist.: Creal, Schwaab, Koopman, Lucas
(2011)

◮ Related to literature on approximations to state space models:
Masreliez (1975), West (1981), Fahrmeir (1992), Nelson Foster
(1994), Müller Petalas (2009)

11



Application I: volatilities under skewness and

fat-tails

◮ If you have a fat-tailed density, you expect to observe
large (absolute) realizations from time to time

◮ Such large values are due to the fat-tailed error density,
and . . . not to recent increases in volatility

◮ Ergo, if you see a large realization but you have fat-tailed
data, you should not immediately increase the volatility

◮ Similar: correlations

◮ Similar: if errors are skewed, you expect a different effect
of a positive (compared to a negative) realization

◮ None of these features are present in (multivariate)
GARCH models or the DCC
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The GH (skewed t) multivariate distribution

p(yt ;µ, Σ̃t , γ, ν) =
ν

ν

2 21−
ν+n
2

Γ(ν2 )π
n
2 |Σ̃t |

1
2

·
K ν+n

2

(

√

d(yt) · (γ′γ)
)

eγ
′L̃−1

t (yt−µ)

(d(yt) · (γ′γ))
− ν+n

4 d(yt)
ν+n
2

,

d(yt) = ν + (yt − µ)′Σ̃−1
t (yt − µ), (1)

If γ = 0, the GH skewed t simplifies to a Student’s t density.

Time variation in Σ̃t is driven by 1st and 2nd derivative of the
pdf.
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The model with time varying parameters

Assuming the time varying parameters follow

ft+1 = Bft + Ast , (2)

where

st = St∇t , (3)

∇t = ∂ ln p(yt |Yt−1; ft , θ)/∂ft . (4)

In the dynamic GH model, the steps st are

st = St ·
1

2
Ψ′

tΣ̃
−1
t⊗vec

(

w1tyty
′
t − Σ̃t − w2tγy

′
t

)

, (5)

where St is the inverse information matrix.
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The Steps and The Parametric Assumptions

In the dynamic GH-Gaussian model, the steps st are:

st = St ·
1

2
Ψ′

tΣ̃
−1
t⊗vec

(

yty
′
t − Σ̃t

)

.
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The Steps and The Parametric Assumptions

In the dynamic GH-Student’s t model, the steps st are:

st = St ·
1

2
Ψ′

tΣ̃
−1
t⊗vec

(

w1tyty
′
t − Σ̃t

)

.

w1t ∝
1

1 + (ν − 2)−1y ′
tΣ̃

−1
t yt

.
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The Steps and The Parametric Assumptions

In the dynamic GH model, the steps st are:

st = St ·
1

2
Ψ′

tΣ̃
−1
t⊗vec

(

w1tyty
′
t − Σ̃t − w2tγy

′
t

)

.

w1t and w2t more complicated expressions, but same intuition:
smaller weights for discordant observations
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The quadrivariate GH in operation
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Example 2: Mixed measurement panel data models
We introduce mixed measurement observation driven models

yit ∼ pi (yit |F
t ,Y t−1;ψ), i = 1, . . . ,N,

ft+1 = ω + B1ft + A1st

The score function is

st = St∇t

∇t =

N
∑

i=1

δit∇i,t =

N
∑

i=1

δit
∂ log pi (yit |F t ,Y t−1;ψ)

∂ft
,

◮ The observations yit may come from different distributions.

◮ The factors ft may be common across distributions.

◮ KEY: The score function allows us to pool information from
different observations to estimate the common factor ft .

◮ δit is an indicator function equal to 1 if yit is observed and zero
otherwise. Missing values are naturally taken into account.
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Scaling matrix
Consider the eigenvalue-eigenvector decomposition of Fisher’s
(conditional) information matrix

It = Et−1[∇t∇
′

t ] = UtΣtU
′

t ,

The scaling matrix is then defined as

St = UtΣ
−1/2
t U ′

t

◮ St is then the “square root” of a generalized inverse.

◮ The innovations st driving ft have an identity covariance matrix,
when the info. matrix is non-singular.

◮ The conditional information matrix is additive for our models:

It = Et−1[∇t∇
′

t ] =

N
∑

i=1

δitEi,t−1[∇it∇
′

it ].
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Log-likehood function and ML estimation

◮ The log-likelihood function for an observation-driven model can
easily be computed.

◮ The ML estimator is

ψ̂ = argmax
ψ

T
∑

t=1

N
∑

i=1

δit log pi (yit |F
t ,Y t−1;ψ),

◮ Estimation is similar to a GARCH model.
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Credit risk

◮ Growing econometrics literature on models for credit risk: McNeil
et al. (2005), Bauwens and Hautsch (JFEct, 2006), Gagliardini and
Gourieroux (JFEct, 2005), Koopman Lucas and Monteiro (JEct,
2008), Duffie et al. (JFE, JoF 2008).

◮ Basic observations:

1. Probability of default varies over time with the business cycle.
2. Conditional on default, the loss (recovery rate) varies with the

business cycle.
3. We observe excess clustering of defaults and ratings

transitions beyond what can be explained by simply adding
covariates.

4. The literature focuses on a credit risk or frailty factor.

◮ Industry standard models are too simple to capture these features.

◮ New models in the literature are parameter driven models requiring
simulation methods for estimation.

◮ We provide observation driven alternatives.
22



Data: Moody’s and FRED

◮ We observe data from Jan. 1980 to March 2010.

◮ 7, 505 companies are rated by Moody’s.

◮ We pool these into 5 ratings categories (IG, BB, B, C, D).

◮ We observe transitions, e.g. IG → BB or C → D

◮ There are J = 16 total types of transitions.

◮ 19,450 total credit rating transitions.

◮ 1,342 transitions are defaults.

◮ 1,125 measurements of loss-given default (LGD).

◮ LGD is the fraction of principal an investor loses when a firm
defaults.

◮ We also observe six macroeconomic variables: industrial production
growth, credit spread, unemployment, annual S&P500 returns,
realized volatility, real GDP growth (qtly).
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Models

◮ Credit ratings can be modeled using the (static) ordered probit
model of CreditMetrics; one of the current industry standards, see
Gupton Stein (2005).

◮ LGD’s are often modeled by (static) beta distributions.

◮ GOAL: Build models that improve on current industry standards

and are (relatively) easy to implement and estimate.

1. Time-varying ordered logit

2. Time-varying beta distribution

◮ Forecasting credit risk.

◮ Simulation of loss distributions and scenario analysis.

◮ Bank executives and regulators and can use them for “stress
testing.”
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Mixed measurement model for credit risk

ym
t ∼ N (µt ,Σm)

y c
i,t ∼ Ordered Logit (πijt , j ∈ {IG, BB, B, C, D}) ,

y r
k,t ∼ Beta (akt , bkt) , k = 1, . . . ,Kt ,

◮ ym
t are the macro variables.

◮ y c
i,t are indicator variables for each credit rating j for firm i .

◮ y r
k,t are the LGDs for the k-th default.

◮ Kt are the number of defaults in period t.

◮ µt , πijt , and (akt , bkt) are functions of an M × 1 vector of factors ft .
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Time varying Gaussian model for macro data

ym
t ∼ N (µt ,Σm) ,

µt = Zmft .

◮ Zm is a (6×M) matrix of factor loadings.

◮ Σm is a (6× 6) diagonal covariance matrix.

◮ S̃t is a selection matrix indicating which macro variables are
observed at time t.

∇m
t =

(

S̃tZ
m
)

′
(

S̃tΣmS̃
′

t

)

−1

S̃t (y
m
t − µt) ,

Im
t =

(

S̃tZ
m
)

′
(

S̃tΣmS̃
′

t

)

−1

S̃tZ
m.
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Moody’s monthly credit ratings transitions
The data have been pooled together each month.

IG to BB 
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Time-varying ordered logit

y c
i,t ∼ Ordered Logit (πijt , j ∈ {IG, BB, B, C, D}) ,

πijt = P [Ri,t+1 = j ] = π̃ijt − π̃i,j−1,t ,

π̃ijt = P [Ri,t+1 ≤ j ] =
exp(θijt)

1 + exp(θijt)
,

θijt = zcijt − Z c′
it ft .

◮ Jc = 5 categories j ∈ {IG, BB, B, C, D}.

◮ Rit is the rating for firm i at the start of month t.

◮ y c
it is an indicator variable for each rating type.

◮ πijt is the probability that firm i is in category j .

◮ π̃i,D,t = 0 and π̃i,IG,t = 1.

◮ To our knowledge, a time-varying ordered logit model is new.
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Time-varying ordered logit
The contribution to the log-likelihood at time t is

ln pi (y
c
it |F

t ,Y t−1;ψ) =

Nt
∑

i=1

Jc

∑

j=1

y c
ijt log (πijt)

The score and information matrices are

∇c
t = −

Nt
∑

i=1

Jc

∑

j=1

y c
ijt

πijt
· π̇ijt · Z

c
it ,

Ic
t =

Nt
∑

i=1

nit





∑

j

π̇2
ij,t

πij,t



 Z c
itZ

c′
it

where

π̇ijt = π̃ijt (1− π̃ijt)− π̃i,j−1,t (1− π̃i,j−1,t) .
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Loss given default

◮ When a firm defaults, investors typically lose a fraction of their
investment (alternatively, they recover a fraction of their
investment).

◮ The fraction of losses experienced by investors also varies with the
business cycle.

◮ We develop a new model for a time-varying beta distribution.

◮ See McNeil and Wendin (2007 JEmpFin) for Bayesian inference in a
state space model.
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Loss given default by transition type

IG to Default 
BB to Default 
B to Default 
CCC to Default 

1982.5 1985.0 1987.5 1990.0 1992.5 1995.0 1997.5 2000.0 2002.5 2005.0 2007.5 2010.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IG to Default 
BB to Default 
B to Default 
CCC to Default 
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Time-varying beta distribution

y r
k,t ∼ Beta (akt , bkt) , k = 1, . . . ,Kt ,

akt = βr · µ
r
kt

bkt = βr · (1− µr
kt)

log (µr
kt/ (1− µr

kt)) = z r + Z r ft .

◮ We observe Kt ≥ 0 defaults at time t.

◮ 0 < y r
k,t < 1 is the amount lost conditional on the k-th default.

◮ µr
kt is the mean of the beta distribution.

◮ z r is the unconditional level of LGDs.

◮ Z r is a (1×M) vector of factor loadings.

◮ βr is a scalar parameter
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Time-varying beta distribution

The contribution to the log-likelihood at time t is

ln pi (y
r
kt |F

t ,Y t−1;ψ) =

Kt
∑

k=1

(akt − 1) log (y r
kt) + (bkt − 1) log (1− y r

kt)

− log [B (akt , bkt)]

The score and information matrices are

∇r
t = βr

Kt
∑

k=1

µrkt(1− µrkt) (Z
r )′ (1,−1)

(

(log(y r
kt), log(1− y r

kt))
′ − Ḃ (akt , bkt)

)

Ir
t = βr

Kt
∑

k=1

(µrkt(1− µrkt))
2 (Z r )′ (1,−1)

(

B̈ (akt , bkt)
)

(1,−1)′ Z r

where

σ2
kt = µr

kt · (1− µr
kt)/(1 + βr ).
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Estimation details

◮ The macro data ym
t has been standardized.

◮ We consider models with p = 1 and q = 1 factor dynamics.

◮ For identification of the level parameters, we set ω = 0 in the factor
recursion:

ft+1 = A1st + B1ft

◮ For identification of the factors, we also impose restrictions on
Zm,Z c , and Z r .

◮ Some parameters have been pooled for “rare” transitions; e.g.,
IG → D and BB → D.

◮ Moody’s re-defined several categories in April 1982 and Oct. 1999
causing incidental re-ratings (outliers), which we handle via dummy
variables for these dates.
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AIC, BIC, and log-likelihoods for different models

(2,0,0) (2,1,0) (2,2,0) (3,0,0)
log-Like -40447.9 -40199.1 -40162.8 -40056.2
AIC 81005.9 80520.1 80457.0 80242.4
BIC 81640.0 81223.0 81218.0 80991.0

(3,1,0) (3,2,0) (3,1,1) (3,2,1)
log-Like -39817.1 -39780.8 -39812.6 -39780.0

AIC 79776.2 79713.6 79771.2 79716.0
BIC 80594.0 80589.0 80612.0 80615.0

The number of factors for each data type are represented by (m, c , r).
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Parameter estimates for the (3,2,0) model

Macro loadings Zm

macro1 macro2 macro3 frailty1 frailty2

IP 1.000 0.000 0.000 0.000 0.000

UR -0.892∗∗∗ 0.122∗∗∗ -0.062∗ 0.000 0.000
(0.037) (0.041) (0.040)

RGDP 0.811∗∗∗ 0.072 0.336∗∗∗ 0.000 0.000
(0.066) (0.079) (0.074)

Cr.Spr. -0.169∗∗ 1.000 0.000 0.000 0.000
(0.085)

rS&P 0.049 -0.268∗∗∗ 1.223∗∗∗ 0.000 0.000
(0.093) (0.081) (0.093)

σS&P -0.007 0.648∗∗∗ 1.000 0.000 0.000
(0.107) (0.084)
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Parameter estimates for the (3,2,0) model

Credit rating and LGD loadings Z c and Z r

macro1 macro2 macro3 frailty1 frailty2

Z c

IG -0.052 0.202∗∗∗ -0.123∗∗ 1.475∗∗∗ -1.165∗∗

(0.059) (0.055) (0.069) (0.371) (0.555)
BB -0.078∗∗ 0.172∗∗∗ -0.102∗∗∗ 1.000 0.000

(0.037) (0.037) (0.040)
B -0.184∗∗∗ 0.162∗∗∗ -0.142∗∗∗ 0.970∗∗∗ -0.016

(0.035) (0.031) (0.040) (0.156) (0.158)
CCC -0.262∗∗∗ 0.073∗ -0.018 1.936∗∗∗ 1.000

(0.057) (0.050) (0.075) (0.465)

Z r 0.018 0.276∗∗∗ -0.082∗ 1.212∗∗∗ 1.065∗∗∗

(0.049) (0.046) (0.062) (0.376) (0.301)

37



Estimated factors for the (3,2,0) model
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Time-varying transition probabilities

IG to IG 

1980199020002010
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Simulating cumulative loss distributions

◮ Most financial institutions carry a large portfolio of credit related
securities.

◮ Given a portfolio at time T , we can use the models to simulate
different possible risk scenarios.

◮ GOAL: determine the amount of capital banks may need in the
future.

◮ What happens if we do not include time-varying parameters ft in
the model?

◮ Scenario analysis:

1. What happens if there is a negative shock to RGDP?

2. What happens if there is an increase to credit spreads?
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Loss given default results

0.0 0.2 0.4 0.6 0.8 1.0
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0.00125

0.00150 (3,2,0) (3,0,0) 

Top and bottom left are loss distributions. Top right is a plot of the mean through

time. Bottom right are transition probabilities from BB → D.
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Simulating cumulative loss distributions

Cumulative losses on a portfolio of bonds at different horizons.

0.00000.00250.00500.00750.01000.01250.0150

1 month

expansion

recession

0.00 0.01 0.02 0.03 0.04

3 months

recession

expansion

0.025 0.050 0.075 0.100 0.125

12 months

recession

expansion

0.05 0.10 0.15 0.20 0.25

36 months

recession

expansion

Comparison between a recession and expansion for (3,2,0) model.
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Simulating cumulative loss distributions

Comparison of cumulative loss distributions with/without factors.
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1 month

(3,0,0)

(3,2,0)

0.005 0.01 0.015 0.02 0.025 0.03 0.035

3 months
(3,0,0)

(3,2,0)

0.025 0.050 0.075 0.100 0.125

12 months
(3,0,0)

(3,2,0)

0.05 0.10 0.15 0.20 0.25

36 months
(3,0,0)

(3,2,0)

Left: starting at fT = 0. Right: starting in a recession.
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Conclusion and future work

◮ We introduce a new class of observation-driven models for
mixed-measurement data which share exposure to common factors.

◮ Missing values and mixed frequencies are handled in a natural way.

◮ Using this approach, we develop new models for credit risk.

◮ The models can be used for simulating loss distributions, stress
testing, and scenario analysis.

◮ Future work:

◮ When computing loss distributions, current models do not
account for changes in market prices of bonds or loans.

◮ Current models depend on industry credit ratings by Moody’s,
Fitch, Standard & Poors.

◮ Potential to use alternative sources of data.
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