Fast MVA Calculations with Algorithmic Differentiation

Sebastian Schneider

November 28, 2019

Sebastian Schneider

AAD for MVA

November 28, 2019 1 / 28

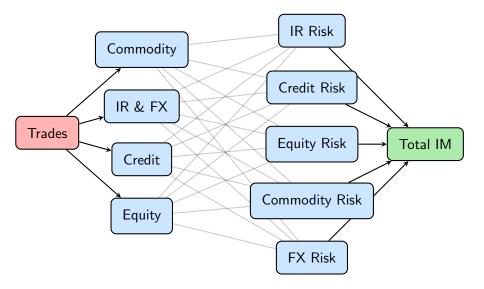
1 Introduction to MVA

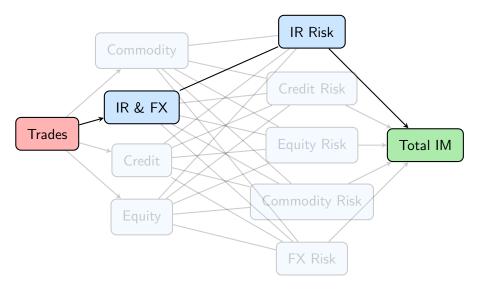
Methodology

æ

▶ ∢ 🖃

• • • • • • • •


Initial Margin


- BCBS and IOSCO regulation on initial margin
- Non-centrally cleared derivatives
- PFE of 99% VaR over 10-day margin period of risk

- Standard Initial Margin Model
- Proposed by ISDA
- Easy to implement
- Non-procyclical

- First-order delta and vega sensitivities w.r.t market quantities
- 6 Risk classes and 4 product classes
- Risk weights and correlations provided by ISDA
- IM corresponds to 99% 10-day VaR

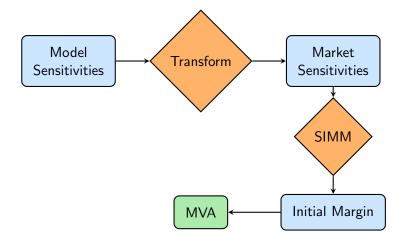
<ロト <問ト < 目ト < 目ト

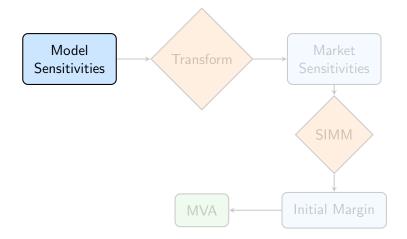
- Margin Valuation Adjustment
- Initial margin cannot be rehypothecated
- Initial margin must be funded over the lifetime of a trade
- Charge counterparty for these funding costs

- *MVA* = *Expectation*[*IM*]
- IM = sum of initial margin over the lifetime of a trade
 - Discounted and weighted by funding costs

Problem: Involves simulation of future initial margin (sensitivities)

Outline


2 Methodology


< E

• • • • • • • •

æ

A D N A B N A B N A B N

ヨト・イヨト

• • • • • • • •

Computing Sensitivities

- Numerical differentiation (bump-and-revalue)
 - $f'(x) \approx \frac{f(x+h)-f(x)}{h}$
 - Inefficient and inaccurate
- Symbolic differentiation
 - Inefficient but exact
- Algorithmic differentiation
 - Efficient and exact

Algorithmic Differentiation

- Decompose a function into a sequence of basic operations
 - Binary: $+, -, /, \ldots$ and unary: log, exp, \ldots
- $\omega_i = BasicOperation(\omega_j)$

•
$$\omega_1, \ldots, \omega_n$$
, $\omega_{n+1}, \ldots, \omega_{l-m}, \ldots, \omega_{l-m+1}, \ldots, \omega_l$

- Apply chain rule of differentiation
 - Forward mode
 - Backward/Adjoint mode (AAD)

AAD Algorithm

- Forward sweep
 - **1** Execute intermediate operations $\omega_i = BasicOperation(\omega_i)$
 - 2 Store instructions on tape
- Backward sweep
 - Accumulate adjoint variables

Adjoint Operation

$$ar{\omega}_{j} = \sum_{j \prec i} ar{\omega}_{i} rac{\partial BasicOperation_{i}(u_{i})}{\partial \omega_{j}}$$

 $u_{i} = (\omega_{j})_{j \prec i}$

Computing Swap Greeks

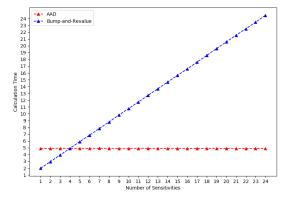
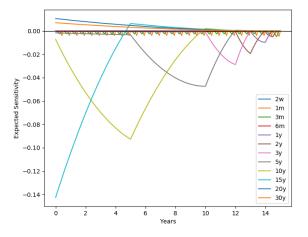
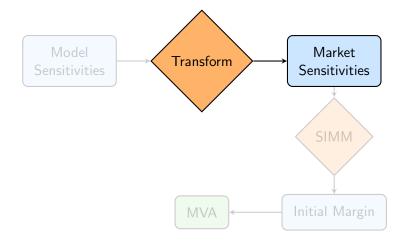
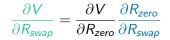


Figure: Performance of AAD and bump-and-revalue


Figure: Expected sensitivity of receiver swap

ヨト・イヨト

• • • • • • • •

Sensitivity Transformation

- $\partial R_{zero} / \partial R_{swap}$
 - Constant
 - Piecewise constant
 - Interpolate
- $\partial V / \partial R_{swap}$
 - Melt linearly
 - Interpolate
 - Approximate with machine learning

Machine Learning for Swap Greeks

$$\widehat{\text{sensitivity}} = f(T - t, T, d_{payer}, V_t)$$

- Simulate training set
- **2** Train/Fit f(.) to training set
- Generate explanatory variables
- Predict sensitivities

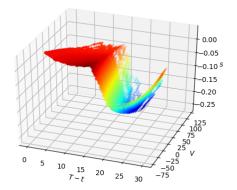
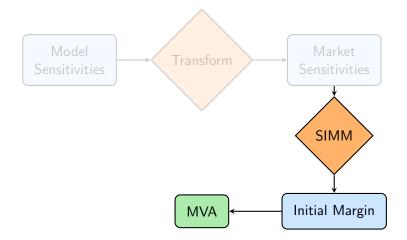



Figure: Training set for sensitivity w.r.t 20-year Euribor-based rate

< A[™]

э

イロト イヨト イヨト イヨト

Computing Initial Margin

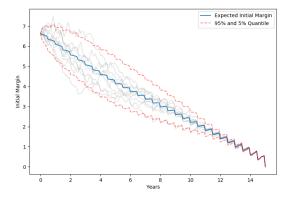


Figure: Expected initial margin profile for an IR swap

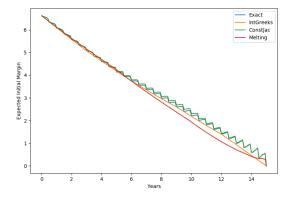


Figure: Different expected initial margin profiles

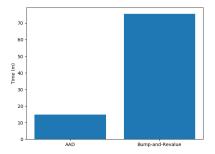
- (日)

э

Outline

1 Introduction to MVA

2 Methodology



æ

Simulation Setup

- Consider a single 15-year interest rate swap
 - Double-curve framework
- 2,000 simulation paths
- Monthly time spacing
- Funding spread of 20 bps

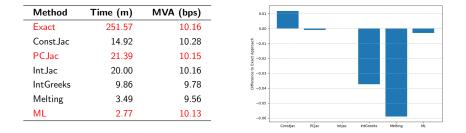

• MVA: 10.16 bps of swap notional

Figure: Performance of MVA Calculation

Sebastian Sch	neider
---------------	--------

Figure: Results for Different Simulation Methods

< 行

э

Concluding Remarks

- AAD is superior to bump-and-revalue
- Advantages of approximating sensitivity transformation
 - Reasonably accurate
- Approximate market sensitivities with machine learning
 - Training set generation is crucial