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Feynman-Kac Theorem

The linear partial differential equation:

∂v(t, x)

∂t
+ Lv(t, x) + g(t, x) = 0, v(T , x) = h(x),

with operator

Lv(t, x) = µ(x)Dv(t, x) +
1

2
σ2(x)D2v(t, x).

Feynman-Kac theorem:

v(t, x) = E
[∫ T

t
g(s,Xs)ds + h(XT )

]
,

where Xs is the solution to the FSDE

dXs = µ(Xs)ds + σ(Xs)dωs , Xt = x .
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Feynman-Kac Theorem (option pricing context)

Given the final condition problem ∂v
∂t + 1

2σ
2S2 ∂2v

∂S2 + rS ∂v
∂S − rv = 0,

v(T , S) = h(ST ) = given

Then the value, v(t, S), is the unique solution of

v(t,S) = e−r(T−t)EQ{v(T , ST )|Ft}

with the sum of first derivatives square integrable, and S = St
satisfies the system of SDEs:

dSt = rStdt + σStdω
Q
t ,

Similar relations also hold for (multi-D) SDEs and PDEs!
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A pricing approach; European options

v(t0, S0) = e−r(T−t0)EQ{h(ST )|F0}

Quadrature:

v(t0, S0) = e−r(T−t0)

∫
R
h(ST )f (ST , S0)dST

Trans. PDF, f (ST ,S0), typically not available, but the characteristic
function, f̂ , often is.
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Motivation Fourier Methods

Derive pricing methods that

are computationally fast
should work as long as we have a characteristic function,

f̂ (u; x) =

∫ ∞
−∞

e iux f (x)dx ;

(available for Lévy processes and affine SDE systems).
The characteristic function of a Lévy process is known by means of the
celebrated Lévy-Khinchine formula.
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Mathematical models for option pricing

The Black-Scholes asset model,

dSt = rStdt +
√
νtStdω

s
t , St0 = S0,

The Heston model (considering stochastic volatility),

dSt = rStdt +
√
νtStdω

s
t , St0 = S0,

dνt = κ(ν̄ − νt)dt + γ
√
νtdω

ν
t , νt0 = ν0,

dωs
tdω

ν
t = ρx ,νdt,

The Bates model (considering price jumps),

dSt
St

=
(
r − λJE[eJ − 1]

)
dt +

√
νtdω

x
t +

(
eJ − 1

)
dXPt ,

dνt = κ(ν̄ − νt)dt + γ
√
νtdω

ν
t , νt0 = ν0,

dωs
tdω

ν
t = ρx ,νdt,
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Heston option valuation PDE

Calibrating is to fit 5 parameters, correlation coefficient ρ, long term
variance ν̄, reversion speed κ, volatility of volatility γ, initial variance
ν0, given market option prices, vmkt

c , vmkt
p .

The Heston option pricing PDE with these five parameters,

∂v

∂t
+ rS

∂v

∂S
+ κ(ν̄ − ν)

∂v

∂ν
+

1

2
νS2 ∂

2v

∂S2

+ ργSν
∂2v

∂S∂ν
+

1

2
γ2ν

∂2v

∂ν2
− rv = 0.

where v = v(t, S , ν;K ,T ) is the option price at time t, with suitable
terminal conditions.

A European option payoff function: vc(T , ST ) = (ST − K )+,
vp(T , ST ) = (K − ST )+, with strike price K.
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Fourier-Cosine Expansions, COS Method (with Fang Fang)

The COS method:

Exponential convergence;
Greeks (derivatives) are obtained at no additional cost.

Based on the availability of a characteristic function.

The basic idea:

Replace the density by its Fourier-cosine series expansion;
Coefficients have simple relation to characteristic function.
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Results, Heston stochastic volatility PDE

GPU computing: Multiple strikes for parallelism, 21 IC’s.

Heston model

N 64 128 256

MATLAB
msec 3.850890 7.703350 15.556240

max.abs.err 6.0991e-04 2.7601e-08 < 10−14

GPU msec 0.177860 0.209093 0.333786

Table 1: Maximum absolute error when pricing a vector of 21 strikes.

Exponential convergence, Error analysis in our papers.

Also work with wavelets instead of cosines.
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Solving the inverse pricing model function

How to find implied volatility?
The inverse of the BS pricing function BS , gσ(·), is not known in
closed-form. A root-finding technique is used to solve the equation:

BS(σimpl , r ,T ,K ,S0)− vmkt
c = 0.

There are many ways to solve this equation, like ”Newton-Raphson” or
”Brent” iteration 1. Since the options prices can move very quickly, it is
often important to use the most efficient method when calculating implied
volatilities.

1http://en.wikipedia.org/wiki/Brent’s method
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CaNN for option pricing models

CaNN consists of two stages, a forward pass and a backward pass.
For example, Heston-CaNN:

Forward pass:
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“Neural Networks”

– Generate the sample data points for input parameters,

– Calculate the corresponding output with PDE or MC (option price or
implied volatility), to form a complete set with in- and outputs,

– Split the above data set into a training and a test part,

– Train the ANN on the training data set,

– Evaluate the ANN on the test data set,

– Replace the original solver by the trained ANN in applications.
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Implied volatility

A gradient squashing technique is used to deal with a steep gradient
in the volatilities wrt. option prices (see [Shuaiqiang et al, 2018]).

Obtain a time value by subtracting the intrinsic value,

V̂ = V ∗t −max(St − Ke−rτ , 0)

Log-scale the intrinsic value, log (V̂ /K )

MSE MAE R2

Input: S , K , τ , r , V /K
Output: σ∗ 6.36 ·10−4 1.24 ·10−2 0.97510

Input: S , K ,τ , r , log(Ṽ /K )
Output: σ∗ 1.55 ·10−8 9.73 ·10−5 0.9999998
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ANN-based model calibration

Calculating IV is the most frequently executed numerical task in
practice. The paper [S. Liu et al., 2019] developed a neural network
solver to learn the 1D inversion of Black-Scholes.

Iterative algorithm GPU (sec) CPU (sec) Robust

Newton-Raphson 19.68 23.06 No
Brent 52.08 60.67 Yes

Bi-section 337.94 390.91 Yes

IV-ANN 0.20 1.90 Yes

Table 2: The total time over 20,000 different cases. CPU (Intel i5) and GPU

(Tesla P100). Robustness means no initial value is required.
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Asset model calibration

The difference between model value Q and market value Q∗,

J(Θ) :=
N∑
i=1

wi ||Q(τi ,mi ; Θ)− Q∗(τi ,mi )||+ λ̄||Θ||,

where Q could be either an option price or implied volatility (IV),
with moneyness m = S/K and time to maturity τ = T − t, N the
number of samples, λ̄ a regularization factor.

The objective function,
argmin

Θ∈Rn
J(Θ),

with n the number of parameters to calibrate. For Heston,
Θ := [ρ, κ, γ, ν̄, ν0]; for Bates, Θ := [ρ, κ, γ, ν̄, ν0, λJ , µJ , σJ ];
for Black-Scholes, Θ := [σ];
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Asset model calibration

The inverse problem is computationally intensive, and the objective
functions are often non-convex and non-linear, especially for
high-dimensional model calibration.
A fast and generic calibration framework should (at least) comprise
three components, an efficient solver, a global optimizer and a parallel
computing environment.

Figure 1: Multiple minima when calibrating Heston [Gilli and Schumann, 2011].
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Calibration neural networks

Training/prediction phases learn the numerical solvers, while the
calibration phase inverts the trained ANN.

The three phases are viewed as a whole, and the difference is just to
change the learnable units.

[Training phase (offline)]

[Calibration phase (online) ]
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CaNN for option pricing models

Backward pass:
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The forward pass

The training data set with IV being the target quantity:

ANN Parameters Value Range Method

ANN Input

Moneyness, m = S0/K [0.6, 1.4] LHS
Time to maturity, τ [0.05, 3.0](year) LHS

Risk free rate, r [0.0%, 5%] LHS
Correlation, ρ [-0.90, 0.0] LHS

Reversion speed, κ (0, 3.0] LHS
Volatility of volatility, γ (0.01, 0.8] LHS

Long average variance, ν̄ (0.01, 0.5] LHS
Initial variance, ν0 (0.05, 0.5] LHS

- European put price, v (0, 0.6) COS
ANN Output implied volatility, σ (0, 0.76) Brent

Table 3: LHS=Latin Hypercube Sampling, COS [Fang and Oosterlee, 2008] to solve Heston, and Brent for implied vol.

The evaluation result suggests no over-fitting.

Heston-CaNN MSE MAE MAPE R2

Training 8.07× 10−8 2.15× 10−4 5.83× 10−4 0.9999936
Testing 1.23× 10−7 2.40× 10−4 7.20× 10−4 0.9999903
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Optimization algorithms within CaNN

⇒ Gradient-Based methods :

Stochastic Gradient Descent (SGD) algorithm to update the
weights and biases (training phase),

W(i+1) ←W(i) − η(i) ∂L
∂W ,

b(i+1) ← b(i) − η(i)∂L
∂b ,

η learning rate, L loss function, i = 0, 1, 2, ...

Several SGD variants, like Adam, RMSprop

⇒ Gradient-free methods: Differential Evolution method (DE) a global
optimizer used to train ANNs[Jarmo, 2003] (calibration phase).
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Differential Evolution

1 Initialization: Generate a population with Np individuals,
(θ1,θ2, ...,θNp);

2 Mutation: Add a randomly sampled difference to “best” individual,

θ′
i = θa + F · (θb − θc).

3 Crossover: Filter out samples by a crossover probability, Cr ∈ [0, 1],

θ′′i =
{ θ′i , if pi ≤ Cr

θi , otherwise

4 Selection: Compare each new candidate with the corresponding
target individual on the objective function,

θi ←
{ θ′′i , if g(θ′′i ) ≤ g(θi )

θi , otherwise.
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Accelerate CaNN

CaNN with a conventional global searcher is not fast enough!

Develop a parallel version of DE incorporate it within ANN.

[ Conventional DE ]

[Parallel DE ]
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An example of acceleration in CaNN

Assuming there are 40 market data samples for calibration.

The setting of DE,

Parameter option

Population size 50
Strategy best1bin
Mutation (0.5, 1.0)

Crossover recombination 0.7

Each generation contains 50×40=2000 input samples, which
traditionally are computed individually.

Speed-up: a whole population (all 2000 samples) within one
generation is computed by the ANN solver simultaneously.
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The backward pass of the CaNN

Calibration on 35 samples (7 strike prices and 5 maturity time).

Heston-CaNN averaged performance over 15,625 test cases.

Deviation from true Θ∗ Averaged Cost/Error

|ν†0 − ν
∗
0 | 4.39× 10−4 CPU time (seconds) 0.85

|ν̄† − ν̄∗| 4.54× 10−3 GPU time (seconds) 0.48

|γ† − γ∗| 3.28× 10−2 Function evaluations 193, 249

|ρ† − ρ∗| 4.84× 10−2 Data points 35

|κ† − κ∗| 4.88× 10−2 Calibration error J(Θ) 2.52× 10−6

parameter lower upper points CaNN search space

ρ -0.75 -0.25 5 [-0.85,-0.05]
ν̄ 0.15 0.35 5 [0.05, 0.45]
γ 0.3 0.5 5 [0.05, 0.75]

ν0 0.15 0.35 5 [0.05, 0.45]
κ 0.5 1.0 5 [0.1, 2.0]
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Other ANN projects, with Anastasia Borovykh, Sander
Bohte

Conditional time series forecasting with convolutional neural networks
based on Google DeepMind’s WaveNet. Layers of dilated
convolutions applied to the input and multiple conditions, learning
trends and relations.

Generalization in fully-connected neural networks for time series
forecasting Use of input and weight Hessians, smoothness of the
learned function w.r.t. the input and the width of the minimum in
weight space, to quantify the ability to generalize. Control the
generalization by means of the training using the learning rate, batch
size and number of training iterations.
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Other machine learning projects

Mortgage pre-payment, learn to know your customers

Estimating model uncertainty for conditional prepayment rate
predictions using artificial neural networks with dropout.

GANs, generative adverserial networks (two NNs competing, a
generator and a discriminator)

Solving PDEs with neural networks, defining loss functions etc.

Sequential Monte Carlo method for training Neural Networks on
non-stationary time series
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New: Mathematical Modeling and Computation in Finance

https://worldscientific.com/worldscibooks/10.1142/q0236
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Mathematical Modeling and Computation in Finance

Point of departure BS equation

Many asset price models!

Equity, interest rate, FX derivatives

Fourier and MC methods

⇒ Including exercises, Python and Matlab codes!

https://worldscientific.com/worldscibooks/10.1142/q0236
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Summary

The problem of financial model calibration is converted into a
machine learning problem.

We need robust components (many different parameter sets)!

The robust and generic framework CaNN rapidly reaches a global
solution with ANN’s inherent parallelism.

One neural network solves two problems, e.g., the forward pass for a
numerical solution of models, the backward pass for model calibration
and sensitivity analysis.

Training is highly efficient with the COS method
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